首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This tutorial review discusses a new class of colloidal metal nanoparticles that is able to enhance the efficiencies of surface-enhanced Raman scattering (SERS) by as much as 10(14)-10(15) fold. This enormous enhancement allows spectroscopic detection and identification of single molecules located on the nanoparticle surface or at the junction of two particles under ambient conditions. Considerable progress has been made in understanding the enhancement mechanisms, including definitive evidence for the single-molecule origin of fluctuating SERS signals. For applications, SERS nanoparticle tags have been developed based on the use of embedded reporter molecules and a silica or polymer encapsulation layer. The SERS nanoparticle tags are capable of providing detailed spectroscopic information and are much brighter than semiconductor quantum dots in the near-infrared spectral window. These properties have raised new opportunities for multiplexed molecular diagnosis and in vivo Raman spectroscopy and imaging.  相似文献   

2.
Conventional analytical methods based on the detection of a single disease marker may not be sufficiently accurate because the progression of disease generally involves multiple chemicals and biomolecules. The drive for simultaneous analysis of multiple targets, which plays a key role in both basic biomedical research and clinical applications, demands the development of multiplexed bioassays with high‐throughput. In this minireview, we summarize the recent progress in optical multiplexed analytical techniques for improving biomedical diagnostics, in which fluorescence and surface enhanced Raman scattering (SERS) with distinctive optical features are chosen as the main readout signals. Focusing on multiplexed strategies in the biomedical field, a selection of recent contributions from biosensing of multiple analytes and multicolor cellular tracking to in vivo multiplexed bioimaging are highlighted. Finally, we frame the future challenges and opportunities for multiplexed bioanalysis.  相似文献   

3.
Harper MM  Dougan JA  Shand NC  Graham D  Faulds K 《The Analyst》2012,137(9):2063-2068
Developments in specific DNA detection assays have been shown to be increasingly beneficial for molecular diagnostics and biological research. Many approaches use optical spectroscopy as an assay detection method and, owing to the sensitivity and molecular specificity offered, surface enhanced Raman scattering (SERS) spectroscopy has become a competitively exploited technique. This study utilises SERS to demonstrate differences in affinity of dye labelled DNA through differences in electrostatic interactions with silver nanoparticles. Results show clear differences in the SERS intensity obtained from single stranded DNA, double stranded DNA and a free dye label and demonstrate surface attraction is driven through electrostatic charges on the nucleotides and not the SERS dye. It has been further demonstrated that, through optimisation of experimental conditions and careful consideration of sequence composition, a DNA detection method with increased sample discrimination at lower DNA concentrations can be achieved.  相似文献   

4.
A magnetic capture-based, surface-enhanced Raman scattering (SERS) assay for DNA detection has been developed which utilizes Au-coated paramagnetic nanoparticles (Au@PMPs) as both a SERS substrate and effective bioseparation reagent for the selective removal of target DNAs from solution. Hybridization reactions contained two target DNAs, sequence complementary reporter probes conjugated with spectrally distinct Raman dyes distinct for each target, and Au@PMPs conjugated with sequence complementary capture probes. In this case, target DNAs were derived from the RNA genomes of the Rift Valley Fever virus (RVFV) or West Nile virus (WNV). The hybridization reactions were incubated for a short period and then concentrated within the focus beam of an interrogating laser by magnetic pull-down. The attendant SERS response of each individually captured DNA provided a limit of detection sensitivity in the range 20-100 nM. X-ray diffraction and UV-vis analysis validated both the desired surface plasmon resonance properties and bimetallic composition of synthesized Au@PMPs, and UV-vis spectroscopy confirmed conjugation of the Raman dye compounds malachite green (MG) and erythrosin B (EB) with the RVFV and WNV reporter probes, respectively. Finally, hybridization reactions assembled for multiplexed detection of both targets yielded mixed MG/EB spectra and clearly differentiated peaks which facilitate the quantitative detection of each DNA target. On the basis of the simple design of a single-particle DNA detection assay, the opportunity is provided to develop magnetic capture-based SERS assays that are easily assembled and adapted for high-level multiplex detection using low-cost Raman instrumentation.  相似文献   

5.
A simple and effective surface-enhanced Raman scattering (SERS)-based protocol for the detection of protein-small molecule interactions has been developed. We employed silver-coated magnetic particles (AgMNPs), which can provide high SERS activity as a protein carrier to capture a small molecule. Combining magnetic separation and the SERS method for protein detection, highly reproducible SERS spectra of a protein-small molecule complex can be obtained with high sensitivity. This time-saving method employs an external magnetic field to induce the AgMNPs to aggregate to increase the amount of atto610-biotin/avidin complex in a unit area with the SERS enhancement. Because of the contribution of the AgMNP aggregation to the SERS, this protocol has great potential for practical high-throughput detection of the protein-small molecule complex and the antigen-antibody immunocomplex.  相似文献   

6.
Protein assays provide direct access to biologically and pharmacologically relevant information. To obtain a maximum of information from the very smallest amounts of complex biological samples, highly multiplexed protein assays are needed. However, at present, cross-reactions of binding reagents restrict the use of such assays to selected cases and severely limit the potential for up-scaling the technology. Here we describe a double-chip format, which can effectively overcome this specificity problem for sandwich immunoassays. This format consists of a capture array and a reference array with fluorescent labeled detection antibodies coupled to the reference array via DNA duplexes. This format allows for the local application of the labeled detection antibodies onto their corresponding specific spots on the capture array. Here we show that this double-chip format allows for the use of cross-reactive antibodies without generating false positive signals, and an assay for the parallel detection of seven different cytokines was set up. Even without further optimization, the dynamic range and the limit of detection for interleukin 8 were found to be comparable to those obtained with other types of multiplexed sandwich immunoassays.  相似文献   

7.
食源性致病菌引起的疾病的快速管控与预防是当前各国面临的食品安全监管难题之一,受到社会各界的广泛关注.目前常用的食源性致病菌检测方法存在步骤复杂、耗时、灵敏度低或选择性差等局限,发展快速、可靠的食源性致病菌检测方法仍是食品安全和公众健康的热点研究领域.表面增强拉曼光谱(SERS)作为一种新型的光谱快检技术,具有灵敏度高、...  相似文献   

8.
Immunoassay has been an essential tool in many areas, including clinical diagnostics. However, it suffers from drawbacks, such as poor availability of high specificity antibodies, limited stability of biological reagents, as well as damage to health and susceptibility of chemical labels to the sample environment. Here we present a new approach, a boronate‐affinity sandwich assay (BASA), for the specific and sensitive determination of trace glycoproteins in complex samples. BASA relies on the formation of sandwiches between boronate‐affinity molecularly imprinted polymers (MIPs), target glycoproteins, and boronate‐affinity surface‐enhanced Raman scattering (SERS) probes. The MIP ensures the specificity, while the SERS detection provides the sensitivity. BASA overcomes the drawbacks of traditional immunoassays and offers a great prospect for application.  相似文献   

9.
The protein phenotypes of extracellular vesicles (EVs) have emerged as promising biomarkers for cancer diagnosis and treatment monitoring. However, the technical challenges in rapid isolation and multiplexed molecular detection of EVs have limited their clinical practice. Herein, we developed a magnetically driven tandem chip to achieve streamlined rapid isolation and multiplexed profiling of surface protein biomarkers of EVs. Driven by magnetic force, the magnetic nanomixers not only act as tiny stir bars to promote mass transfer and enhance reaction efficiency of EVs, but also transport on communicating vessels of the tandem chip continuously and expedite the assay workflow. We designed cyclic surface enhancement of Raman scattering (SERS) tags to bind with target EVs and then release them by exonuclease I, eliminating steric hindrance and amplifying the SERS signal of multiple protein biomarkers on EVs. Due to the excellent assay performance, six breast cancer biomarkers were detected simultaneously on EVs using only 10 μL plasma within 1.5 h. The unweighted SUM signature offers great accuracy in discriminating breast cancer patients from healthy donors. Overall, the dynamic magnetic driving tandem chip offers a new avenue to advance the clinical application of EV-based liquid biopsy.  相似文献   

10.
The potential use of surface Raman enhanced spectroscopy (SERS) for confirmatory identification and the semi-quantitative analysis of selected tricyclic antidepressants (TCAs) is examined utilizing a conventional silver colloid. Raman and SERS spectra of aqueous solutions of imipramine (Imi) and its metabolite, desipramine (Des), were recorded as the function of concentration using NIR excitation. A good linear correlation is observed for the dependence of the SERS signal at 684 cm(-1) (R(2) = 0.9997) on Imi concentration over the range of 0.75-7.5 μM. The limit of detection of imipramine in the silver colloidal solution is 0.98 μM. SERS spectra of Imi and Des were also recorded for blood plasma samples without prior purification as well as after the use of standard solid phase extraction. All spectra show the characteristic spectral profile of the molecules and moreover, stronger signal enhancement is observed for Imi in the "raw" samples as opposed to Imi extracted from a biological matrix.  相似文献   

11.
Multiplex analysis permits the detection of several analytical targets at the same time. This approach may permit to draw a rapid and accurate diagnostic about the health of an individual or an environment. Among the analytical techniques with potential for multiplexing surface-enhanced Raman scattering (SERS) offer unique advantages such as ultrasensitive detection down low the deconvolution times, a unique signature containing all the vibrational information of the target molecules, and the possibility of performing the experiments even in very demanding environments such as natural or biological fluids. Here we review the late advances in multiplex SERS including the direct methods, those aided by the surface functionalization of the plasmonic nanoparticles and the use of SERS encoded particles.  相似文献   

12.
张亮  贺辛亥  任研伟  陈彤善  陈东圳 《应用化学》2020,37(12):1364-1373
表面增强拉曼散射(Surface enhanced Raman scattering,SERS)是一种分子检测光谱技术,借助SERS基底,可对生物、化学等复杂体系中的痕量分子进行分析。 其中静电纺纳米纤维SERS基底由于具有高比表面积、可透气透水、柔韧可折叠弯曲等特点,在复杂体系中提取、过滤、浓缩痕量分子等应用场景中,其表面结构具有其他刚性SERS基底不可比拟的优势。然而,静电纺纳米纤维SERS基底的发展却受到制备方法的限制,存在检测灵敏度较低、制备过程复杂等问题。 因此,目前的研究工作主要集中在新型制备方法及工艺的开发。 本文综述了静电纺纳米金银复合纤维SERS基底的几种常用制备方法,包括直接混合纺丝法、化学吸附法、静电吸附法、物理沉积法和原位化学还原法,并总结了静电纺纳米纤维SERS基底在复杂体系中提取、过滤、浓缩待测分子的应用,最后对静电纺纳米复合纤维SERS基底的发展进行了展望。  相似文献   

13.
A surface enhanced Raman scattering (SERS) spectrometry is an interesting alternative for a rapid molecular recognition of analytes at very low concentration levels. The hyphenation of this technique with advanced separation methods enhances its potential as a detection technique. Until now, it has been hyphenated mainly with common chromatographic and electrophoretic techniques. This work demonstrates for a first time a power of preparative isotachophoresis-surface enhanced Raman scattering spectrometry (pITP-SERS) combination on the analysis of model analyte (buserelin) in a complex biological sample (urine). An off-line identification of target analyte was performed using a comparison of Raman spectra of buserelin standard with spectra obtained by the analyses of the fractions from preparative isotachophoretic runs. SERS determination of buserelin was based on the method of standard addition to minimize the matrix effects. The linearity of developed method was obtained in the concentration range from 0.2 to 1.5 nmol L(-1) with coefficient of determination 0.991. The calculated limit of detection is in tens of pico mols per liter.  相似文献   

14.
We report on a study of the overall surface-enhanced Raman scattering (SERS) response from several thiol-terminated molecules located at interstitial sites between Ag nanoparticles. Multiplexing of the SERS signal was demonstrated along with its dependence of the molecular length, regiochemistry, and the number of thiol groups. The data collected establish pathways for the rational design of the SERS reporters and multiplexed sensory applications.  相似文献   

15.
陈明明  苏毕航  黄建立  付凤富  董永强 《色谱》2022,40(11):1039-1046
利用便携式拉曼光谱仪建立了一个快速筛查与检测谷物中真菌毒素脱氧雪腐镰刀菌烯醇(DON)的表面增强拉曼散射(SERS)方法。首先利用实验室前期开发的方法制备了具有高活性的水凝胶SERS芯片。该SERS芯片是将预先制备的高SERS活性的单层碳基点(CDs)包裹的银纳米颗粒团聚体(a-AgNPs/CDs)与聚乙烯醇(PVA)水溶液混合均匀后,再利用循环冷冻-解冻的物理交联法制备而成的。实验优化了影响水凝胶SERS芯片对DON的SERS响应的实验条件,包括溶剂、浸泡温度和浸泡时间。在最佳的SERS检测条件下(溶剂为水-乙醇(1:1, v/v),浸泡温度为40 ℃,浸泡时间为5 min), DON的线性响应范围为1~10000 μg/kg(相关系数(R2)=0.9967),检出限(LOD)为0.14 μg/kg,表明该SERS基底具有较高的灵敏度。得益于水凝胶特殊的孔径结构,实际样品基质中常见的糖、蛋白质、油脂、色素等干扰物质都被阻隔在水凝胶外。因此,在复杂样品检测中仅需要简单的提取,而不需要复杂的分离处理。将该方法用于小麦粉中DON的检测,所得回收率为97.3%~103%,相对标准偏差为4.2%~5.0%。实验结果表明所建立的检测DON的SERS方法具有响应范围宽、灵敏度高、重复性好、响应迅速、操作简单、抗干扰能力强等优点,这说明本实验室所构建的水凝胶SERS芯片在粮食中生物毒素的快速筛查与检测方面具有良好的应用潜力。  相似文献   

16.
Numerous studies have addressed the challenges of implementing miniaturized microfluidic platforms for chemical and biological separation applications. However, the integration of real time detection schemes capable of providing valuable sample information under continuous, ultra low volume flow regimes has not fully been addressed. In this report we present a chip based chromatography system comprising of a pillar array separation column followed by a reagent channel for passive mixing of a silver colloidal solution into the eluent stream to enable surface enhanced Raman spectroscopy (SERS) detection. Our design is the first integrated chip based microfluidic device to combine pressure driven separation capability with real time SERS detection. With this approach we demonstrate the ability to collect distinctive SERS spectra with or without complete resolution of chromatographic bands. Computational fluidic dynamic (CFD) simulations are used to model the diffusive mixing behaviour and velocity profiles of the two confluent streams in the microfluidic channels. We evaluate the SERS spectral band intensity and chromatographic efficiency of model analytes with respect to kinetic factors as well as signal acquisition rates. Additionally, we discuss the use of a pluronic modified silver colloidal solution as a means of eliminating contamination generally caused by nanoparticle adhesion to channel surfaces.  相似文献   

17.
Quantum dots (Qdots) are fluorescent nanoparticles that have great potential as detection agents in biological applications. Their optical properties, including photostability and narrow, symmetrical emission bands with large Stokes shifts, and the potential for multiplexing of many different colours, give them significant advantages over traditionally used fluorescent dyes. Here, we report the straightforward generation of stable, covalent quantum dot–protein A/G bioconjugates that will be able to bind to almost any IgG antibody, and therefore can be used in many applications. An additional advantage is that the requirement for a secondary antibody is removed, simplifying experimental design. To demonstrate their use, we show their application in multiplexed western blotting. The sensitivity of Qdot conjugates is found to be superior to fluorescent dyes, and comparable to, or potentially better than, enhanced chemiluminescence. We show a true biological validation using a four-colour multiplexed western blot against a complex cell lysate background, and have significantly improved previously reported non-specific binding of the Qdots to cellular proteins.  相似文献   

18.
Bioanalytical applications of SERS (surface-enhanced Raman spectroscopy)   总被引:3,自引:1,他引:2  
Surface-enhanced Raman scattering (SERS) is a powerful technique for analyzing biological samples as it can rapidly and nondestructively provide chemical and, in some cases, structural information about molecules in aqueous environments. In the Raman scattering process, both visible and near-infrared (NIR) wavelengths of light can be used to induce polarization of Raman-active molecules, leading to inelastic light scattering that yields specific molecular vibrational information. The development of surface enhancement has enabled Raman scattering to be an effective tool for qualitative as well as quantitative measurements with high sensitivity and specificity. Recent advances have led to many novel applications of SERS for biological analyses, resulting in new insights for biochemistry and molecular biology, the detection of biological warfare agents, and medical diagnostics for cancer, diabetes, and other diseases. This trend article highlights many of these recent investigations and provides a brief outlook in order to assess possible future directions of SERS as a bioanalytical tool.  相似文献   

19.
Surface-enhanced Raman spectroscopy (SERS) has been widely applied for rapid and sensitive detection of various chemical and biological targets. Here, we incorporated a filter syringe system into the SERS method to detect the fungicide ferbam in water. Silver nanoparticles (Ag NPs) were aggregated by sodium chloride (NaCl) to form nanoclusters that could be trapped in the pores of the filter membrane to from the SERS-active membrane. Then samples were filtered through the membrane. After capturing the target, the membrane was taken out and air dried before measuring by a Raman instrument. After optimisation of various parameters, the developed filter SERS method was able to detect the fungicide ferbam as low as 2.5 μg/L and had a good quantitative capability. The developed method was successfully applied in three water samples, including double-distilled water, tap water, and pond water. The test can be carried out on site using a portable Raman instrument. This study shows that the filter-based SERS method improves the detection capability in water samples, including the sensitivity and portability, and could be applied in the detection of various toxins in real-world water samples.  相似文献   

20.
Circulating biomarkers have emerged as promising non-invasive, real-time surrogates for cancer diagnosis, prognostication and monitoring of therapeutic response. Emerging data, however, suggest that single markers are inadequate in describing complex pathologic transformations. Architecting assays capable of parallel measurements of multiple biomarkers can help achieve the desired clinical sensitivity and specificity while conserving patient specimen and reducing turn-around time. Here we describe a plasmon-enhanced Raman spectroscopic assay featuring nanostructured biomolecular probes and spectroscopic imaging for multiplexed detection of disseminated breast cancer markers cancer antigen (CA) 15-3, CA 27-29 and cancer embryonic antigen (CEA). In the developed SERS assay, both the assay chip and surface-enhanced Raman spectroscopy (SERS) tags are functionalized with monoclonal antibodies against CA15-3, CA27-29 and CEA, respectively. Sequential addition of biomarkers and functionalized SERS tags onto the functionalized assay chip enable the specific recognition of these biomarkers through the antibody-antigen interactions, leading to a sandwich spectro-immunoassay. In addition to offering extensive multiplexing capability, our method provides higher sensitivity than conventional immunoassays and demonstrates exquisite specificity owing to selective formation of conjugated complexes and fingerprint spectra of the Raman reporter. We envision that clinical translation of this assay may further enable asymptomatic surveillance of cancer survivors and speedy assessment of treatment benefit through a simple blood test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号