首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Single-phase ZnAl2O4 nanoparticles with the spinel structure were successfully synthesized using a modified polyacrylamide gel method according to the atomic ratio of Zn to Al = 1: 1.8. The as-prepared samples were characterized by means of X-ray powder diffraction (XRD), thermogravimetric analysis (TG), differential scanning calorimetry analysis (DSC), field-emission scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and photoluminescence (PL) spectra. XRD patterns show that the pure phase of ZnAl2O4 is obtained after heating the xerogel at 900°C for 5 h in air. The SEM images reveal that the ZnAl2O4 nanoparticles have a narrow particle size distribution and the average particle size is around 45 nm. Photoluminescence (PL) spectra demonstrate the single phase ZnAl2O4 nanoparticles have an emission peak located at 469 nm when excited by 350 nm light. The phase structure, coordination mechanism, and luminescence properties have been discussed on the basis of the experimental results.  相似文献   

2.
There are many studies on the surface molecular motion of polymer films [ 1 ], but no report on surface thermal properties of polymer because of experimental difficulties. The thermal property of oligomeric polystyrene (PS) was investigated by differential scanning calorimetry (DSC) in the present study. In order to increase the ratio of surface area to volume of PS particles, the DSC samples were prepared by mechanically grinding mixtures of PS and Al2O3 powders. The grinding mixtures of these powders with low particle size showed a transition at a low temperature of 14–17 °C (much lower than the bulk glass transition temperature, Tg), and this low‐temperature transition was dependent on the size of PS particles. This transition seems to result from the surface molecular motion of the activated surface layer of PS. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
Photo correlation spectroscopy was used to measure the particle size distribution of TiO2 films. Other parameters, such as porosity, BET surface area, average pore size, crystallite size D101, distribution of pore size etc. were also measured. The effects of these parameters on the ionic liquid based dye-sensitized solar cells (DSC) were studied. It was concluded that the particle size distribution of nanocrystalline TiO2 played an important role on the performance of DSC. The narrow particle size distribution of nanocrystalline TiO2 increased the efficiency of DSC, while the wide distribution decreased the efficiency of DSC. From the result above, it was also concluded that the photo correlation spectroscopy was a good method to identify the performance of TiO2 films. Based on electrochemical impedance spectroscopy, we found that the particle size distribution could affect the electronic contact between the TiO2 layers as well. The narrow particle size distribution made the electronic contact between TiO2 layers better than the wide particle size distribution of the TiO2 films, and then better the electronic contact, higher the efficiency of the DSC.  相似文献   

4.
熔盐法合成LiTaO3粉体   总被引:1,自引:0,他引:1  
LiTaO3由于其突出的电光、压电和热释电效应,以及居里温度高、介电常数低,介电损耗小、老化速率低等特点,已成为广泛应用的功能材料[1,2]。而且,LiTaO3还可以与其他陶瓷材料如(K0.5Na0.5)NbO3等复合制成新型压电陶瓷[3]。另外,与陶瓷材料PZT相比较,该种压电材料不含铅,不会造成环境污染,属环境协调性绿色材料。LiTaO3的熔点很高(1630℃)[4],目前合成这类材料的常规方法有固相法、质子交换法和溶胶-凝胶法等[5 ̄9]。其中固相法采用Li2O和Ta2O5为原料,高温煅烧(往往高于1000℃),由于Li2O在高温下易挥发,使化学计量比较难控制[6],且在…  相似文献   

5.
The morphology of different ratio K/V catalysts supported on porous α‐alumina substrate was investigated by atomic force microscopy (AFM). Changes in the particle size distribution, pore size distribution were analyzed respectively using AFM software. In addition, their catalytic activities and compositions for carbon oxidation were studied by x‐ray diffraction (XRD), differential scanning calorimetry (DSC), and temperature‐programmed reactions (TPR). As a result, with the increase of K concentration, the mean particle size gradually increased and the mean pore size decreased. According to the catalytic activity studies, the catalytic activity of the KVO3 and K3V5O14 phases are more effective than KCl.  相似文献   

6.
This paper investigates the influence of mechanical grinding on pozzolanic characteristics of circulating fluidized bed fly ash (CFA) from the dissolution characteristics, paste strength, hydration heat and reaction degree. Further, the hydration and hardening properties of blended cement containing different ground CFA are also compared and analyzed from hydration heat, non-evaporable water content, hydration products, pore structure, setting time and mortar strength. The results show that the ground CFA has a relatively higher dissolution rate of Al2O3 and SiO2 under the alkaline environment compared with that of raw CFA, and the pozzolanic reaction activity of ground CFA is gradually improved with the increase of grinding time. At the grinding time of 60 min, the pozzolanic reaction degree of CFA paste is improved from 6.32% (raw CFA) to 13.71% at 7 days and from 13.65 to 28.44% at 28 days, respectively. The relationships of pozzolanic reaction degree and grinding time of CFA also conform to a quadratic function. For ground CFA after a long-time grinding such as 60 min, the hydration heat and non-evaporable water content of blended cement containing CFA are significantly improved. Owing to relatively smaller particle size and higher activity of ground CFA, the blended cement paste has more hydration products, narrower pore size distribution and lower porosity. For macroscopic properties, with increase in grinding time of CFA, the setting time and strength of blended cement are gradually shortened and improved, respectively.  相似文献   

7.
The morphology and thermal properties of Allylisobutyl Polyhedral Oligomeric Silsesquioxane (POSS)/Polybutadiene (PB) nanocomposites prepared through anionic polymerization technique were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The results of XRD, SEM and TEM showed that the aggregation of POSS in PB matrix occurred obviously, forming crystalline domains and the size of POSS particles increased with increasing POSS content. The DSC and TGA results indicated that the glass transition temperature (T g) of the nanocomposites was significantly increased and the maximum degradation temperature (T dmax) of nanocomposites was slightly increased compared with pure PB, implying an increase in thermal stability.  相似文献   

8.
The influence of Bi2O3 particles size at the sub-micron scale on the thermal excitation threshold and combustion performance of nano-thermite systems was investigated. Three formulas were designed and prepared, Al(100 nm)/Bi2O3(170 nm), Al(100 nm)/Bi2O3(370 nm) and Al(100 nm)/Bi2O3(740 nm). The samples were characterized and tested by SEM, XRD, and DSC techniques. Electrical ignition and combustion experiments were performed. The results showed that with the increase of the particle size of Bi2O3, in the case of slow linear heating, the exothermic heat decreased (1051.2 J g−1, 527.3 J g−1 and 243.6 J g−1) and the thermal excitation threshold temperature increased (564.52 °C, 658.1 °C and 810.9 °C). Simultaneously, the state of the thermite reaction correspondingly changed to solid-solid, liquid-solid and liquid-liquid thermite reaction. In the case of rapid heating , the increase in particle size increased the excitation current (0.561A, 0.710A and 0.837A). During the combustion process, the thermite system with the smallest Bi2O3 particle size showed the largest combustion rate, and that with the largest particle size had the longest combustion duration.  相似文献   

9.
Nanofibrous pyrolusite (β-MnO2) was synthesized. The particle shape changes from nanofibers to nanoparticles after grinding, and the phase structure does not change. The local environment around the central manganese ion has a slight change in nanoparticles related to nanofibers. Fourier transform infrared (FTIR) spectra showed that A2u mode frequency shifts from 514 cm-1 to 574 cm-1 to 617 cm-1 gradually while the particle shape and size change from long nanofibers to short fibers and to nanoparticles. The extra vibra-tional band that is unpredicted by factor group analysis originates from the contribution of A2u mode of the particles with different sizes and shapes in the studied sample. On the basis of Rietveld refinement analysis of XRD profiles and the FTIR spectra, we think that two kinds of MnO6 octahedral geometries, i.e., 4 long+2 short and 4 short+2 long, could exist in pyrolusites synthesized by different route. The maximum vibrational frequency in the FTIR spectra of pyrolusites is sensitive to these micro-structures. Assignment of four vibrational bands in the middle and far infrared region has been made.  相似文献   

10.
Diol capped γ-Fe2O3 nanoparticles are prepared from ferric nitrate by refluxing in 1,4-butanediol (9.5 nm) and 1,5-pentanediol (15 nm) and uncapped particles are prepared by refluxing in 1,2-propanediol followed by sintering the alkoxide formed. X-ray diffraction (XRD) shows that all the samples have the spinel phase. Raman spectroscopy shows that the samples prepared in 1,4-butanediol and 1,5-pentanediol and 1,2-propanediol (sintered at 573 and 673 K) are γ-Fe2O3 and the 773 K-sintered sample is Fe3O4. Raman laser studies carried out at various laser powers show that all the samples undergo laser-induced degradation to α-Fe2O3 at higher laser power. The capped samples are however, found more stable to degradation than the uncapped samples. The stability of γ-Fe2O3 sample with large particle size (15.4 nm) is more than the sample with small particle size (10.2 nm). Fe3O4 having a particle size of 48 nm is however less stable than the smaller γ-Fe2O3 nanoparticles.  相似文献   

11.
采用水和乙醇混合溶剂沉淀的方法制备了不同粒径的BaF2纳米粉体。用XRD、TEM和FSEM表征了粉体的粒径和形貌。研究了陈化时间、水和乙醇的体积比对BaF2纳米粉体的粒径和形貌的影响。结果表明,随混合溶剂中乙醇含量升高,沉淀粒径减小。BaF2沉淀粒径的倒数和溶剂介电常数的倒数呈线性关系,据此关系可以控制BaF2纳米粉体的粒径。  相似文献   

12.
Bioactive glasses have attracted considerable interest in recent years, due to their technological application, especially in biomaterials research. Differential scanning calorimetry (DSC) has been used in the study of the crystallization mechanism in the SiO2–Na2O–CaO–P2O5 glass system, as a function of particle size. The curve of the bulk glass presents a slightly asymmetric crystallization peak that could be deconvoluted into two separate peaks, their separation being followed in the form of powder glasses. Also, a shift of the crystallization peaks to lower temperatures was observed with the decrease of the particle size. FTIR studies – that are confirmed by XRD measurements – proved that the different peaks could be attributed to different crystallization mechanisms. Moreover, it is presented the bioactive behavior of the specific glass as a function of particle size. The study of bioactivity is performed through the process of its immersion in simulated human blood plasma (simulated body fluid, SBF) and the subsequent examination of the development of carbonate-containing hydroxyapatite layer on the surface of the particles. The bioactive response is improved with the increase of the particle size of powders up to 80 μm and remains almost unchanged for further increase, following the specific surface to volume ratio decrease.  相似文献   

13.
Carob pod powder, an excellent source of health-promoting substances, has found its use in a wide range of food products. Grinding conditions affect the physical and chemical properties of the powder, but their influence on the bioaccessibility of phenolic compounds in carob pod powder has not yet been determined. The carob pods were ground for 30–180 s in a vibratory grinder. The median values (D50) of particle size decreased after 60 s of grinding (87.9 μm), then increased to 135.1 μm. Lightness showed a negative correlation with D50 and aw, while the values of redness and yellowness decreased with the reduction in particle size and water activity. The smaller the value of D50, the higher the equilibrium moisture content of carob powder. Phenolic acids (vanillic, ferulic, cinnamic) and flavonoids (luteolin, naringenin, apigenin) were found in all samples of carob powder. The grinding time influenced their content in carob powder, with maximum values at 180 s. Similar observations were made when assessing antioxidant capacity. The in vitro digestion process only improved the bioaccessibility of catechin content in all samples. However, the bioaccessibility of the phenolic compounds and the total phenolic and flavonoid contents decreased with the increase in grinding time. Our findings revealed that the grinding of carob pods for 180 s improved the extractability of phenolics; however, their bioaccessibility was reduced. It is sufficient to ground the carob pod for 30 s, ensuring good availability of nutraceuticals and lower energy cost for grinding.  相似文献   

14.
锰源对燃烧法制备5V级正极材料LiNi0.5Mn1.5O4的影响   总被引:1,自引:1,他引:0  
以硝酸锰和醋酸锰,采用蔗糖燃烧法制备锂离子电池正极材料LiNi0.5Mn1.5O4通过XRD、SEM、粒径分布测试、循环伏安、恒流充放电测试以及交流阻抗等方法,研究了醋酸锰和硝酸锰对产物的结构、形貌、粒径及电化学性能的影响。XRD测试结果表明样品的结构都为立方尖晶石型,属于Fd3m空间群。不同的锰源对材料的粒径及粒径分布有很大的影响。以醋酸锰为原料制得的材料的粒径较小并且分布更均匀,有利于锂离子的脱出和嵌入从而提高电化学性能。以醋酸锰为锰源制得的LiNi0.5Mn1.5O4在3.6~5.2 V的充放电电压范围内的电化学性能更好,1C(1C=140.0 mA.g-1)倍率的首次放电容量为144.5 mAh.g-1,循环100周后容量保持率为96%,在3C,5C,10C以及20C的放电容量分别为136.3,132.0,124.7以及96.6 mAh.g-1。  相似文献   

15.
The synthesis and the characterization of Al2O3-based nanocrystalline inorganic pigments are reported. The pigments were synthesized by the polymeric precursor (Pechini method) using Cr2O3 as chromophore. XRD results only evidenced the corundum phase. The average particle size was about 34 nm. The samples were also characterized by differential scanning calorimetry (DSC) and thermogravimetry (TG), and CIE-L*a*b* calorimetry. The pigments obtained in this work presented different colors, ranging from green to rose. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Titanium dioxide (TiO2), especially in its anatase form, is an effective photocatalyst under ultraviolet (UV) light. The particle size of TiO2 is a critical factor to determine its photoactivity based on its quantum effectiveness under light irradiations. Thus, nanocrystalline TiO2 has been widely accepted to significantly enhance this effect. The sol–gel method is generally used to synthesize the anatase form of nanocrystalline TiO2. In this study, we expanded the synthesis method of TiO2 to high pressures under direct heating (hydrothermal method) and indirect heating (microwave-assisted method). It was found that pH value is one of the major factors to control nano-sizes of TiO2 particles, and the neutral condition in all methods is preferable for controlling the sizes of the prepared TiO2 particles. The microwave-assisted method further improves quality of synthesized nano-size TiO2 below 10 nm. These results have been confirmed by both the direct size measurement using TEM images and indirect determination using XRD peaks. The collected samples are further analyzed using UV–Vis spectroscopy to identify the particle size-dependent photoreactivity and to confirm the effectiveness of microwave-assisting under neutral conditions. DSC is also a powerful tool to identify the crystalline transition of TiO2.  相似文献   

17.
Since the layered double hydroxides (abbreviatedas LDHs), known as anionic clays or like-hydrotalciteswere firstly reported to be used as precursors of newcatalytic materials by S. Miyata[1] in 1971, theirpreparations, ion-exchanges with the balancing inter-layer anions, structure characteristics and the otherpotential applications have attracted more and moreinterests. The preparation of such materials could beperformed by various methods such as the coprecipita-tion[2], the heat-crystalliza…  相似文献   

18.
结合行星式球磨机,采用低温固相法制备Ni-Al_2O_3催化剂,考察了球磨时间对Ni-Al_2O_3催化剂晶相结构(XRD)、还原特征(H2-TPR)、孔道结构(BET)、粒径分布(PSD)、表面形貌(SEM)和浆态床CO甲烷化性能的影响.结果表明,球磨时间为60 min,催化剂(CT-60)平均粒径最小,为141 nm;比表面积最大,为329 m2/g.随球磨时间延长,Ni-Al_2O_3催化剂的甲烷化性能(CO转化率、CH_4选择性和CH_4收率)均先增加后减少.其中,球磨时间为60 min制备的催化剂(CT-60)甲烷化性能最佳,其CO转化率、CH_4选择性和CH_4收率分别达87.9%、8 6.8%和74.3%.结合催化剂表征可知,CT-60优异的性能与其具有较小的颗粒尺寸(141 nm)和较大的比表面积(329 m2·g-1)有很大的关联.即,催化剂颗粒尺寸越小,比表面积越大,其性能越好.  相似文献   

19.
胶溶-水热晶化过程中纳米TiO2相稳定性研究   总被引:1,自引:0,他引:1  
The phase stability of nanocrystaline anatase and rutile TiO2 in sols peptized at different temperature has been studied by X-ray Diffraction (XRD) and thermodynamical analysis. The results show that the stability of nanocrystaline TiO2 of different crystal types is a function of particle size. According to the thermodynamical analysis, anatase TiO2 becomes more stable than rutile TiO2 when the particle size is less than ca. 14 nm, which coincides with the experimental data obtained by XRD. Both surface Gibbs free energy and surface stress play important roles in the thermodynamically phase stability. Comparing the data calculated thermodynamically with the experimental results obtained under different temperatures, it is found that the constant K in the function relation, f=KGS, between surface free energy GS and surface stress f is temperature dependent and equal to 1 at 333 K and 2 at 453 K, respectively.  相似文献   

20.
Illite particles were exfoliated from the illite-organics intercalation precursor in the ultrasound process. Four intercalating agents (glycerol, hydrazine hydrate, dimethyl sulfoxide, and urea) were selected to study the intercalation reaction for purified illite, thermal activated illite, and acidified illite and to prepare different illite-organics intercalation complexes. The resulting intercalation complexes and exfoliated illite were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), the zeta potential test, the particle size test and thermogravimetry analysis (TG). XRD results showed that the thermal activation and subsequent acidification treatment to exchange K+ in the interlayer of illite with H+ is a necessary condition for organic intercalation. FTIR and TG analysis confirmed the intercalation of four intercalating agents into the interlayer of illite. During the high-temperature ultrasonic treatment, the organic molecules were deintercalated from the interlayers of illite-organics intercalation complexes, leading to the separation of the illite layers. The d001 diffraction of illite in XRD patterns became broad and weak after ultrasonic treatment; this indicated the random orientation of illite platelets. Particle size analysis showed the exfoliated illite (IUE) from the illite-urea intercalation complex possessed the smaller particle diameter. SEM and TEM observation showed the particle size of IUE is 0.5–4 μm with a layer thickness of approximately 200–300 nm. Moreover, the exfoliation of illite layers exposed more internal layers with negative charge, leading to the decrease of zeta potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号