共查询到20条相似文献,搜索用时 0 毫秒
1.
A sensitive enantioselective high-performance liquid chromatography (HPLC) method was developed and validated to determine S-(+)- and R-(-)-arotinolol in human plasma. Baseline resolution was achieved by using teicoplanin macrocyclic antibiotic chiral stationary phase (CSP) known as Chirobiotic T with a polar organic mobile phase consisting of methanol:glacial acetic acid:triethylamine, 100:0.1:0.1, (v/v/v) at a fl ow rate of 0.8 mL/min and UV detection set at 317 nm. Human plasma was spiked with stock solution of arotinolol enantiomers and labetalol as the internal standard. The assay involved the use of liquid-liquid extraction procedure with ethyl ether under alkaline condition for human plasma sample prior to HPLC analysis. Recoveries for S-(+)- and R-(-)-arotinolol enantiomers were in the range 93-103% at 200-1400 ng/mL level. Intra-day and inter-day precision calculated as %RSD was in the ranges 1.3-3.4 and 1.9-4.5% for both enantiomers, respectively. Intra-day and inter-day accuracies calculated as percentage error were in the ranges 1.2-3.5 and 1.5-6.2% for both enantiomers, respectively. Linear calibration curves in the concentration range 100-1500 ng/mL for each enantiomer showed a correlation coefficient (r) of 0.9998. The limit of quantitation (LOQ) and limit of detection (LOD) for each enantiomer in human plasma were 100 and 50 ng/mL (S/N = 3), respectively. 相似文献
2.
A simple and sensitive high-performance liquid chromatography (HPLC) method has been developed and validated for the determination of DRF-1042, a novel orally active camptothecin (CPT) analog, in human plasma. The sample preparation was a simple deproteinization with acidified methanol yielding almost 100% recovery of DRF-1042. An isocratic reverse-phase HPLC separation was developed on a Supelcosil-LC318 column (250 x 4.6 mm, 5 microm) with mobile phase consisting of 1% v/v triethylamine acetate, pH 5.5 and acetonitrile (80:20, v/v) at a fl ow rate of 1.0 mL/min. The eluate was monitored with a fluorescence detector set at excitation and emission wavelengths of 370 and 430 nm, respectively. The standard curves were linear (r(2) > 0.999) in the concentration ranges 5.0-2004 ng/mL. The lower limit of quantification (LLQ) of the assay was 5 ng/mL. The mean measured quality control (QC) concentrations (range 5 ng/mL to 40 microg/mL) deviated from the nominal concentrations in the range of -10.5-0.08 and -14.5-7.97%, inter- and intra-day, respectively. The inter- and intra-day precisions in the measurement of QC samples at four tested concentrations, were in the range 0.64-5.89% relative standard deviation (RSD) and 0.33-14.7% RSD, respectively. The method was found to be suitable for measurement of plasma concentrations above the calibration curve after serial dilutions. Stability of DRF-1042 was confirmed in a battery of studies, viz., on bench-top, in the auto-sampler, in the stock solutions, after four quick freeze-thaw cycles, up to one month at -20 degree C in human plasma and up to 2 months in the ex vivo samples. The method is simple, sensitive and reliable and has been successfully implemented to investigate the clinical pharmacokinetics of DRF-1042 in cancer patients in a phase I clinical trial. 相似文献
3.
A simple and extractionless HPLC method using fluorescence detection was developed for the determination of rosiglitazone in human plasma. After deproteinization using perchloric acid the plasma samples were directly injected onto the HPLC system. The mobile phase was composed of acetonitrile (52%) and 20 mm ammonium acetate (48%, pH 7.5), and analysis was run at a flow rate of 0.2 mL/min with the detector operating at 247 nm for excitation wavelength and at 367 nm for emission wavelength, respectively. The method has a mean recovery of 97%, while the intra-day and inter-day precisions were all less than 7%. This method is simple, specific, sensitive and requires only a small plasma volume with short analytical time, and is suitable for the determination of plasma rosiglitazone in routine measurements for pharmacokinetic studies. 相似文献
4.
Mullangi R Kallem RR Bhamidipati RK Mamidi RN Srinivas NR 《Biomedical chromatography : BMC》2004,18(8):576-580
A specific, accurate, precise and reproducible high-performance liquid chromatography (HPLC) method was developed for the estimation of DRF-4367, a novel cyclooxygenase-2 inhibitor in rat plasma. The assay procedure involved simple liquid/liquid extraction of DRF-4367 and internal standard (IS, celecoxib) from plasma into dichloromethane. The organic layer was separated and evaporated under a gentle stream of nitrogen at 40 degrees C. The residue was reconstituted in the mobile phase and injected onto a Kromasil KR 100-5C(18) column (4.6 x 250 mm, 5 microm). The mobile phase consisting of 0.01 M potassium dihydrogen ortho-phosphate (pH 3.2) and acetonitrile (40:60, v/v) was used at a flow rate of 1.0 mL/min. The eluate was monitored using an UV detector set at 247 nm. The ratio of peak area of analyte to IS was used for quantification of plasma samples. Nominal retention times of DRF-4367 and IS were 6.6 and 11.2 min, respectively. The standard curve for DRF-4367 was linear (r(2) > 0.999) in the concentration range 0.1-20 micro g/mL. Absolute recovery was >86% from rat plasma for both analyte and IS. The lower limit of quantification of DRF-4367 was 0.1 micro g/mL. The inter- and intra-day precisions in the measurement of quality control samples, 0.1, 0.3, 8.0 and 15.0 microg/mL, were in the range 6.93-9.34% relative standard deviation (RSD) and 0.48-6.59% RSD, respectively. Accuracy in the measurement of QC samples was in the range 91.24-109.36% of the nominal values. Analyte and IS were stable in the battery of stability studies, viz. benchtop, autosampler and freeze-thaw cycles. Stability of DRF-4367 was established for 1 month at -80 degrees C. The application of the assay to a pharmacokinetic study in rats is described. 相似文献
5.
Sun Y Irie M Kishikawa N Wada M Kuroda N Nakashima K 《Biomedical chromatography : BMC》2004,18(8):501-507
A highly sensitive HPLC method was developed for the determination of xenoestrogenic compound, bisphenol A (BPA) in human breast milk samples. After a two-step liquid-liquid extraction, BPA was derivatized with fluorescent labeling reagent, 4-(4,5-diphenyl-1H-imidazol-2-yl)benzoyl chloride (DIB-Cl). The excess fluorescent reagent could be removed effectively using a column-switching system. The separation of DIB-BPA from endogenous materials in milk was carried out on two C(18) columns and fluorescence intensity was monitored at 475 nm with the excitation of 350 nm. A good linearity (r = 0.994) was observed of BPA in the concentration range of 0.2-5.0 ng mL(-1) in breast milk, and the detection limit was 0.11 ng mL(-1) at a signal-to-noise ratio of 3. Intra- and inter-day precision (RSD, %) were less than 8.7 and 10.4, respectively. Twenty-three breast milk samples of healthy lactating women were analyzed for the BPA concentration; the mean value was 0.61 +/- 0.20 ng mL(-1), with no correlation to the lipid content of milk samples. 相似文献
6.
A rapid, sensitive and specific reversed-phase high-performance liquid chromatographic method was developed for the determination of 3-n-butylphthalide, a drug currently being developed for treatment of stroke, in rabbit plasma. Fluorescence detection at an excitation wavelength of 280 nm and an emission wavelength of 304 nm was used for quantification of 3-n-butylphthalide. Ibuprofen was used as internal standard. Plasma samples were extracted with diethyl ether under acidic conditions. After evaporation of the organic phase, the extract was dissolved in mobile phase and injected into the chromatograph with C(18) column and a mobile phase of 0.05 mol/L sodium acetate buffer (pH 4.5)-acetonitrile (400:600). The peak area ratio vs concentration in plasma was linear over the range of 0.0212-4.24 microg/mL (correlation coefficient r = 0.9984) and the limit of quantification was 0.0212 microg/mL. Mean recovery was determined as 101.0% by analysis of plasma standard samples containing 0.0424, 0.424, 2.12 and 4.24 microg/mL of 3-n-butylphthalide. The intra-day relative standard deviations (RSDs) ranged from 3.6 to 8.9% and inter-day RSDs were within 8.0%. Pharmacokinetics of a single intravenous dose of 3-n-butylphthalide to the rabbits was presented to illustrate the applicability of this method. 3-n-Butylphthalide exhibited linear pharmacokinetics after intravenous administration to rabbits over the dose range 1-10 mg/kg. 相似文献
7.
Garcia MA Solans C Calvo A Hernandez E Rey R Bregante MA Puig M 《Biomedical chromatography : BMC》2005,19(1):27-31
A simple and sensitive HPLC method has been developed for the simultaneous determination of enrofloxacin (ENR) and ciprofloxacin (CIP) in pig tissue using difloxacin (DIF) as internal standard. Tissue sample preparations were carried out by adding phosphate buffer (pH 7.4, 0.1 m), followed by extraction with trichloromethane. Fluoroquinolones were separated on a reversed-phase column and eluted with aqueous buffer solution-acetonitrile (80:20, v/v). The concentrations of CIP, ENR and DIF eluted from the column, with retention times of 2.20, 2.73 and 4.38 min, respectively, were monitored by fluorescence detection at lambda(ex) 276 and lambda(em) 442 nm. The detection and quantitation limit were 8 and 25 ng/g, respectively, for both compounds. Standard curves were linearly related to concentration in the range 25-400 ng/g. The consequences of the introduction of minor reasonable variations (ruggedness studies) have also been analysed. Finally, the measurement of the tissue levels of ENR and CIP in the pig tissues after oral administration confirmed the utility of the proposed method. 相似文献
8.
To the best of our knowledge, bioanalytical methods to determine rosiglitazone in human plasma reported in literature use internal standards that are not commercially available. Our purpose was to develop a simple method for the determination of rosiglitazone in plasma employing a commercially available internal standard (IS). After the addition of celecoxib (IS), plasma (0.25 mL) samples were extracted into ethyl acetate. The residue after evaporation of the organic layer was dissolved in 750 microL of mobile phase and 50 microL was injected on to HPLC. The separation was achieved using a Hichrom KR 100, 250 x 4.6 mm C(18) with a mobile phase composition potassium dihydrogen phosphate buffer (0.01 m, pH 6.5):acetonitrile:methanol (40:50:10, v/v/v). The flow-rate of the mobile phase was set at 1 mL/min. The column eluate was monitored by fluorescence detector set at an excitation wavelength of 247 nm and emission wavelength of 367 nm. Linear relationships (r(2) > 0.99) were observed between the peak area ratio rosiglitazone to IS vs rosiglitazone concentrations across the concentration range 5-1000 ng/mL. The intra-run precision (%RSD) and accuracy (%Dev) in the measurement of rosiglitazone were <+/-10.69 and <-12.35%, respectively across the QC levels (50-1000 ng/mL). The extraction efficiency was >80% for both rosiglitazone and IS from human plasma. The lower limit of quantitation of the assay was 5 ng/mL. In summary, the methodology for rosiglitazone measurement in plasma was simple, sensitive and employed a commercially available IS. 相似文献
9.
We developed and validated a reversed-phase high-performance liquid chromatographic method with fluorescence detection for the simultaneous determination of YM-64227 [4-cyclohexyl-1-ethyl-7-methylpyrido(2,3-d)pyrimidin-2-(1H)-one], a novel and selective phosphodiesterase type 4 inhibitor, and its fi ve hydroxylated metabolites in dog plasma. The plasma samples were extracted with tert-butyl methyl ether under alkali conditions. The analytes were well separated on a phenyl ethyl column (5 microm, 250 x 4.6 mm i.d.), opreating at 40 degrees C and using an acetonitrile-acetic acid gradient at a fl ow rate of 1.0 mL/min. The fluorescence signal was monitored at an excitation and emission wavelength of 330 and 400 nm, respectively. No interfering peak was observed at the retention time of YM-64227, its metabolites or the internal standard. The validated quantitation range of the method was 0.4-200 ng/mL for all analytes using 0.5 mL of the plasma sample. The recovery of analytes in the extraction process was more than 65.5%. The intra- and inter-assay precision was less than 5.1 and 12.6%, respectively, and the intra- and inter-assay accuracy ranged from -8.1 to 11.8% and -8.0 to 9.9%, respectively. Using this assay, the plasma concentration of YM-64227 and metabolites can be determined after the oral administration of YM-64227 to beagle dogs. 相似文献
10.
A multi-residue method for the simultaneous extraction from drinking water using solid-phase extraction on LiChrolut EN [poly(styrene-divinylbenzene), PSDVB] and determination of nine N-methylcarbamate pesticides (NMCs) (aldicarb, its metabolites i.e. aldicarb sulfone and aldicarb sulfoxide and carbaryl, carbofuran, dioxacarb, ethiofencarb, methomyl and propoxur) using reversed-phase liquid chromatography was studied. A 1000-fold pre-concentration was achieved and the method was used for determination of the nine pesticides in water, with limits of detection in the range 3-15 ng L(-1). For all compounds the recoveries determined at the 0.1 and 1 microg L(-1) level generally ranged from 85 to 104% with relative standard deviations (RSD) of 1.4-8.8%. 相似文献
11.
建立了基于微乳液相色谱(MELC)的人血浆中丙泊酚浓度的测定方法。采用Hypersil BDS C18色谱柱分离,并考察了微乳流动相中各组分对溶质洗脱的影响。优化的色谱条件: 以0.5%醋酸(含有3.0%十二烷基硫酸钠(SDS),0.8%正庚烷,6.0%正丁醇)微乳为流动相,流速为1.0 mL/min,荧光检测器激发波长(λex)为274 nm、发射波长(λem)为312 nm,柱温为室温。人血浆样品用流动相稀释并离心后,直接进样分析。丙泊酚在0.25~10 μg/mL质量浓度范围内呈良好的线性关系,方法的回收率为(98.2±1.9)%~(104.6±2.2)%;日内测定峰面积的相对标准偏差(RSD)为1.42%~2.43%,日间测定峰面积的RSD为2.75%~4.79%。该方法简便可行、重复性好,可用于人血浆中丙泊酚浓度的测定。 相似文献
12.
Moraes LA Giner RM Paul-Clark MJ Perretti M Perrett D 《Biomedical chromatography : BMC》2004,18(1):64-68
We describe here a modified protocol for the simultaneous quantification of specific eicosanoids formed during stimulation of human platelets in vitro with adenosine diphosphate. The eicosanoids thromboxane B(2) (TXB(2)), arachidonic acid (AA), 12-R-hydroxyeicosatetraenoic acid (12-R-HETE), 12-S-hydroxyheptadecatrienoic acid (12-S-HHTrE) and the internal standard prostaglandin B(1) (PGB(1)) were extracted from human platelets by liquid-liquid extraction using ethyl acetate. This was followed by derivatization and fluorescent detection prior to analysis by reversed phase liquid chromatography. The high-performance liquid chromatographic method consisted of ODS reversed-phase column (3 microm) and a mobile phase of acetonitrile-water (85:15). TXB(2) and AA plasma calibration curves were linear between 6.25 and 125 ng mL(-1) (r(2) > 0.997), whereas for 12-R-HETE and 12-S-HHTrE the curves were linear between 5.0 and 40 ng mL(-1) (r(2) > 0.998). All calibration curve standards had <15% CV (coefficient of variation) and between-run precision, and the percentage relative deviation for replicate (n = 6) quality controls was less than 5.5%. The method was adapted to allow the screening of drugs that may affect either one or both of the lipoxygenase and cyclo-oxygenase pathways. 相似文献
13.
Hollow fiber-based liquid-liquid-liquid microextraction (HF-LLLME) followed by flow injection analysis and diode array detection (FIA-DAD) was applied as a simple and sensitive quantitative method for the determination of phenazopyridine in urine and plasma samples. Flow injection system included a conventional HPLC system (without a chromatographic column) and a diode array detector. The extraction of phenazopyridine was carried out using diphenyl ether as the organic phase for filling the pores of the hollow fiber wall, and 0.1 M H(2)SO(4) solution as acceptor phase in the lumen of the fiber. The factors affecting the HF-LLLME and flow injection analysis including type of organic solvent, pH of donor phase, extraction temperature, extraction time, stirring rate, and pH of mobile phase were investigated and the optimal extraction conditions were established. With the consumption of 5 mL of sample solution, the enrichment factor was about 230. The limit of detection was 0.5 μg/L with inter- and intra-day precision being (RSD%) 6.9 and 4.9, respectively. Excellent linearity was found between 5 and 200 μg/L. 相似文献
14.
Quantitative analysis of docetaxel in human plasma using liquid chromatography coupled with tandem mass spectrometry 总被引:2,自引:0,他引:2
Kuppens IE van Maanen MJ Rosing H Schellens JH Beijnen JH 《Biomedical chromatography : BMC》2005,19(5):355-361
An assay for the quantitative determination of docetaxel in human plasma is described. Docetaxel was extracted from the matrix using liquid-liquid extraction with ter-butylmethylether, followed by high-performance liquid chromatographic analysis using an alkaline eluent. Paclitaxel was used as internal standard. Positive ionization electrospray tandem mass spectrometry was performed for selective and sensitive detection. The method was validated according to the FDA guidelines on bioanalytical method validation. The validated range for docetaxel was from 0.25--1000 ng/mL using 200 microL plasma aliquots. The method requires only a limited volume (200 microL) of human plasma and the method can be applied in studies requiring a low lower limit of quantitation of 0.25 ng/mL. The assay was applied successfully in several clinical and pharmacological studies with docetaxel. 相似文献
15.
Validation and application of a high-performance liquid chromatography--tandem mass spectrometry assay for mosapride in human plasma 总被引:1,自引:0,他引:1
Ramakrishna NV Vishwottam KN Manoj S Koteshwara M Chidambara J Varma DP 《Biomedical chromatography : BMC》2005,19(7):539-548
A simple, rapid, sensitive and specific liquid chromatography-tandem mass spectrometry method was developed and validated for quantification of mosapride (I), a novel and potent gastroprokinetic agent that enhances the upper gastrointestinal motility by stimulating 5-HT(4) receptor. The analyte and internal standard, tamsulosin (II), were extracted by liquid-liquid extraction with diethyl ether-dichloromethane (70:30, v/v) using a Glas-Col Multi-Pulse Vortexer. The chromatographic separation was performed on a reversed-phase Waters symmetry C(18) column with a mobile phase of 0.03% formic acid-acetonitrile (10:90, v/v). The protonated analyte was quantitated in positive ionization by multiple reaction monitoring with a mass spectrometer. The mass transitions m/z 422.3 -->198.3 and m/z 409.1 -->228.1 were used to measure I and II, respectively. The assay exhibited a linear dynamic range of 0.5-100.0 ng/mL for mosapride in human plasma. The lower limit of quantitation was 500 pg/mL with a relative standard deviation of less than 15%. Acceptable precision and accuracy were obtained for concentrations over the standard curve ranges. A run time of 2.0 min for each sample made it possible to analyze a throughput of more than 400 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies. 相似文献
16.
Peoples MC Halquist MS Ismaiel O El-Mammli MY Shalaby A Karnes HT 《Biomedical chromatography : BMC》2008,22(11):1272-1278
A simple, sensitive and rapid liquid-liquid extraction method for the analysis of nicotinic acid (niacin) and its labeled internal standard nicotinic acid-d4 (niacin-d4) in human plasma was developed and validated. The analyte and its internal standard were isolated from acidified plasma using a single liquid-liquid extraction procedure with methyl-t-butyl ether. The extracted samples were analyzed by liquid chromatography-tandem mass spectrometry in positive electrospray ionization mode with multiple reaction monitoring. The calibration curves were linear in the measured range between 5 and 1000 ng/mL and the limit of detection was calculated as 122 pg/mL. The method required 250 microL of human plasma and the total run time between injections was 3.5 min. Matrix effects were assessed by post-column infusion experiments, phospholipids monitoring and post-extraction addition experiments. The extraction of phospholipids and niacin from plasma was studied under acidic, neutral and basic conditions. Acidic conditions were optimal for both the recovery of niacin and the removal of phospholipids; the degree of matrix effects for niacin was determined to be 2.5%. It was concluded that effective removal of matrix components can overcome low recovery issues associated with liquid-liquid extractions of polar analytes. 相似文献
17.
Liquid-liquid-liquid microextraction (LLLME) in combination with HPLC and UV detection has been used as a sensitive method for the determination of ephedrine in urine samples. Extraction process was performed in a homemade total glass vial without using a Teflon ring, usually employed. Ephedrine was first extracted from 3.5 mL of urine sample (pH 12) into a microfilm of toluene/benzene (50:50). The analyte was subsequently back extracted into an acidic microdrop solution (pH 2) suspended in the organic phase. The extract was then injected into the HPLC system directly. An enrichment factor of 137 along with a good sample clean-up was obtained under the optimized conditions. The calibration curve showed linearity in the range of 0.01-50 mg/L with regression coefficient corresponding to 0.998. The LODs and LOQs, based on a S/N of 3 and 10, were 5 and 10 microg/L, respectively. The method was eventually applied for the determination of ephedrine in urine sample after oral administration of 5 mg single dose of drug. 相似文献
18.
Ramakrishna NV Vishwottam KN Manoj S Koteshwara M Wishu S Varma DP 《Biomedical chromatography : BMC》2005,19(10):751-760
A simple, rapid, sensitive and specific liquid chromatography-tandem mass spectrometry method was developed and validated for quantification of hydrochlorothiazide (I), a common diuretic and anti-hypertensive agent. The analyte and internal standard, tamsulosin (II) were extracted by liquid-liquid extraction with diethyl ether-dichloromethane (70:30, v/v) using a Glas-Col Multi-Pulse Vortexer. The chromatographic separation was performed on a reversed-phase column (Waters symmetry C18) with a mobile phase of 10 mm ammonium acetate-methanol (15:85, v/v). The protonated analyte was quantitated in negative ionization by multiple reaction monitoring with a mass spectrometer. The mass transitions m/z 296.1 solidus in circle 205.0 and m/z 407.2 solidus in circle 184.9 were used to measure I and II, respectively. The assay exhibited a linear dynamic range of 0.5-200 ng/mL for hydrochlorothiazide in human plasma. The lower limit of quantitation was 500 pg/mL, with a relative standard deviation of less than 9%. Acceptable precision and accuracy were obtained for concentrations over the standard curve ranges. A run time of 2.5 min for each sample made it possible to analyze a throughput of more than 400 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies. 相似文献
19.
A high-performance liquid chromatographic assay with UV detection was developed for the determination of fluconazole in human plasma. The method utilized solid-phase extraction for sample clean-up. The separation was performed on a C18 column by isocratic elution with a mobile phase of 10 mM acetate buffer at pH 5.0 and methanol and UV detection at 210 nm. Validation was performed according to the current recommendations of the USFDA bioanalytical method validation guidance. The method proved to be specific, accurate, precise and linear between 200 and 10,000 ng/mL with correlation coefficients greater than 0.999. The coefficient of variation was within 11% and relative deviation was less than 10%. 相似文献
20.
Pamidronate is a bisphosphonate that is effective in treating bone disease including osteopenia and osteoporosis in adults. A sensitive and reliable method for the analysis of pamidronate in whole blood and urine is key to the development of this drug for use in children. A previously described method for pamidronate analysis serum and urine did not consistently detect the drug at satisfactory levels in whole blood. The procedure involves co-precipitation of the bisphosphonates with calcium phosphate, pre-column derivitization with fluorescamine, HPLC utilizing a Nucleosil C(18) column, and fluorescence detection with excitation at 395 nm and emission at 480 nm.Changes to the original protocol included the use of a new internal standard (alendronate), the optimization of the concentration of ethylenediaminetetraacetic acid (EDTA) for dissolving the precipitate, and the elimination of the acidification step prior to deproteinization. The optimum EDTA concentration, which had a significant effect on the labeling capability of fluorescamine, was determined to be 20 mm.A good separation between pamidronate and alendronate was achieved using a heated (40 degrees C ) Nucleosil C(18), 10 micro m particle size column. The mobile phase was an aqueous solution of 1 mm Na(2)EDTA-methanol (97:3, v/v) adjusted to pH 6.5 using a fl ow-rate of 1 mL/min. Fluorescence detection was set at 395 nm for excitation and at 480 nm for emission. The limit of quantitation for pamidronate was 0.5 micro g/mL in whole blood and 0.1 micro g/mL in urine. The method was applied to both whole blood and urine samples from pediatric patients. 相似文献