首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Suzuki-Miyauru cross-coupling of bromopolypyridines with potassium vinyltrifluoroborate affords vinyl-substituted polypyridyl ligands in moderate to good yields. This reaction allows simple and practical syntheses of numerous vinyl-substituted polypyridines, such as 4'-vinyl-2,2':6',2'-terpyridine, 5,5'-divinyl-2,2'-bipyridine, and 4,4'-divinyl-2,2'-bipyridine. In addition, a new ruthenium complex, [Ru(5,5'-divinyl-2,2'-bipyridine)(3)](2+), was synthesized and found to undergo reductive electropolymerization smoothly.  相似文献   

2.
A series of platinum(II) complexes bearing a chromophore-acceptor dyad obtained by reacting 4-(p-bromomethylphenyl)-6-phenyl-2,2'-bipyridine or 4'-(p-bromomethylphenyl)-2,2':6',2'-terpyridine with pyridine, 4-phenylpyridine, 4,4'-bipyridine, 1-methyl-4-(pyridin-4'-yl)pyridinium hexafluorophosphate respectively, were synthesized. Their photophysical properties, emission quenching studies by Pt nanoparticles and methyl viologen, electrochemical properties and photoinduced electron-transfer reactions in a photocatalytic hydrogen-generating system containing triethanolamine and colloidal Pt without an extra electron relay, were investigated. A comparison of the rates of hydrogen production for the two photocatalytic systems, one containing a metal-organic dyad and the other comprising a 1:1 mixture of the parental platinum(II) complexes and the corresponding electron relay, showed that intramolecular electron transfer improves the photocatalytic efficiency. Compared with cyclometalated platinum(II) complexes, the related platinum(II) terpyridyl complexes exhibited poor performance for photocatalytic hydrogen evolution. An investigation into the amount of hydrogen generated by three platinum(II) complexes containing cyclometalated ligands with methyl groups located on different phenyl rings revealed that the efficiency of hydrogen evolution was affected by a subtle change of functional group on ligand, and the hydrogen-generating efficiency in the presence or absence of methyl viologen is comparable, indicating electron transfer from the excited [Pt(C^N^N)] chromophore to colloidal Pt. (1)H NMR spectroscopy of the metal-organic dyads in an aqueous solution in the presence of excess triethanolamine revealed that the dyad with a viologen unit was unstable, and a chemical reaction in the compound occurred prior to irradiation by visible light under basic conditions.  相似文献   

3.
Two new heteroleptic ruthenium(II) photosensitizers that contains 2,2';6,2'-terpyridine with extended π-conjugation with donor groups, a 4,4'-dicarboxylic acid-2,2'-bipyridine anchoring ligand and a thiocyanate ligand have been designed, synthesized and fully characterized by CHN, mass spectrometry, UV-vis and fluorescence spectroscopies and cyclic voltammetry. The new sensitizers have either 3,5-di-tert-butyl phenyl (m-BL-5) or triphenylamine (m-BL-6) groups, where the molar extinction coefficient of both the sensitizers is higher than the analogous ruthenium dyes. Both the sensitizers were tested in dye-sensitized solar cells using two different redox electrolytes.  相似文献   

4.
The synthesis of two series of peptidic chains composed of bis(terpyridine)ruthenium(II) acceptor units and organic chromophores (coumarin, naphthalene, anthracene, fluorene) by stepwise solid‐phase peptide synthesis (SPPS) techniques is described. The first series of dyads comprises directly amide linked chromophores, while the second one possesses a glycine spacer between the two chromophores. All dyads were studied by UV/Vis and NMR spectroscopy, steady‐state luminescence, luminescence decay and electrochemistry, as well as by DFT calculations. The results of these studies indicate weak electronic coupling of the chromophores in the ground state. Absorpion spectra of all dyads are dominated by metal‐to‐ligand charge‐transfer (MLCT) bands around 500 nm. The bichromophoric systems, especially with coumarin as organic chromophore, display additional strong absorptions in the visible spectral region. All complexes are luminescent at room temperature (3MLCT). Efficient quenching of the fluorescence of the organic chromophore by the attached ruthenium complex is observed in all dyads. Excitation spectra indicate energy transfer from the organic dye to the ruthenium chromophore.  相似文献   

5.
A novel heteroleptic ruthenium complex carrying a heteroaromatic-4,4'-pi-conjugated 2,2'-bipyridine [Ru(II)LL'(NCS)(2)] (L = 4,4'-bis[(E)-2-(3,4-ethylenedioxythien-2-yl)vinyl]-2,2'-bipyridine, L' = 4,4'-(dicarboxylic acid)-2,2'-bipyridine) was synthesized and used in dye-sensitized solar cells, yielding photovoltaic efficiencies of 9.1% under standard global AM 1.5 sunlight.  相似文献   

6.
Monolayers of [Ru(bpy)2(micro-1)M2][PF6]4 salts (M = Os, Ru; bpy = 2,2'-bipyridine, 1 = 4'-(2,2'-bipyridin-4-yl)-2,2':6',2' '-terpyridine, tpy = 2,2':6',2' '-terpyridine, and 2 = 4'-(4-pyridyl)-2,2':6',2' '-terpyridine) were self-assembled on platinum and investigated by fast-scan electrochemistry. The electrochemistry of the complexes in solution and confined to the surface in self-assembled monolayers (SAMs) exhibited an almost ideal behavior. Scan-rate-dependent measurements of the peak current density (jp) were used to determine interaction energies within the monolayer. It is shown that the tpy coordination sites of the dinuclear complexes interact more strongly within the SAM than the bipyridine-coordinated fragments. This result was supported by peak potential shifts, which are due to interaction forces in SAMs. The alignment of the rodlike complexes relative to the surface is discussed, and the results of molecular mechanics calculations indicate that the species adopt a tilted orientation.  相似文献   

7.
A new series of multicomponent ZnPc-Ru(bpy)(3) systems, 1a-c, consisting of a zinc-phthalocyanine linked through conjugated and/or nonconjugated connections to a ruthenium(II) tris(bipyridine) complex, has been synthesized. The ruthenium complexes 1a-c were prepared from phthalocyanines 2a-c, bearing a 4-substituted-2,2'-bipyridine ligand by treatment with [Ru(bpy)2Cl2].2H2O. Different synthetic strategies have been devised to prepare the corresponding dyad precursors (2a-c). Compound 2a, for example, with an ethenyl bridge, was synthesized by statistical condensation of 4-tert-butylphthalonitrile and 5-[(E)-2-(3,4-dicyanophenyl)ethenyl]-2,2'-bipyridine (3) in the presence of zinc chloride. Compounds 2b and 2c, having, respectively, an amide or an ethynyl bridge, were prepared following a different synthetic approach. The method involves the coupling of an appropriate 5-substituted-2,2'-bipyridine to an unsymmetrical phthalocyanine suitably functionalized with an amino (4) or an ethynyl group (5). The photophysical properties of the dyads that are ZnPc-Ru(bpy)3 1a-c and related model compounds have been determined by a variety of steady-state (i.e., fluorescence) and time-resolved methods (i.e., fluorescence and transient absorption). Clearly, intramolecular electronic interactions between the two subunits dominate the photophysical events following the initial excitation of either chromophore. These intramolecular interactions lead, in the case of photoexcited ZnPc, to faster intersystem crossing kinetics compared to a ZnPc reference, while photoexcited [Ru(bpy)3]2+) undergoes a rapid and efficient transduction of triplet excited-state energy to the Pc.  相似文献   

8.
A series of mono-, bis-, tris-, and tetrakis(porphinato)zinc(II) (PZn)-elaborated ruthenium(II) bis(terpyridine) (Ru) complexes have been synthesized in which an ethyne unit connects the macrocycle meso carbon atom to terpyridyl (tpy) 4-, 4'-, and 4'-positions. These supermolecular chromophores, based on the ruthenium(II) [5-(4'-ethynyl-(2,2';6',2'-terpyridinyl))-10,20-bis(2',6'-bis(3,3-dimethyl-1-butyloxy)phenyl)porphinato]zinc(II)-(2,2';6',2'-terpyridine)(2+) bis-hexafluorophosphate (RuPZn) archetype, evince strong mixing of the PZn-based oscillator strength with ruthenium terpyridyl charge resonance bands. Potentiometric and linear absorption spectroscopic data indicate that for structures in which multiple PZn moieties are linked via ethynes to a [Ru(tpy)(2)](2+) core, little electronic coupling is manifest between PZn units, regardless of whether they are located on the same or opposite tpy ligand. Congruent with these experiments, pump-probe transient absorption studies suggest that the individual RuPZn fragments of these structures exhibit, at best, only modest excited-state electronic interactions that derive from factors other than the dipole-dipole interactions of these strong oscillators; this approximate independent character of the component RuPZn oscillators enables fabrication of nonlinear optical (NLO) multipoles with extraordinary hyperpolarizabilities. Dynamic hyperpolarizability (β(λ)) values and depolarization ratios (ρ) were determined from hyper-Rayleigh light scattering (HRS) measurements carried out at an incident irradiation wavelength (λ(inc)) of 1300 nm. The depolarization ratio data provide an experimental measure of chromophore optical symmetry; appropriate coupling of multiple charge-transfer oscillators produces structures having enormous averaged hyperpolarizabilities (β(HRS) values), while evolving the effective chromophore symmetry from purely dipolar (e.g., Ru(tpy)[4-(Zn-porphyrin)ethynyl-tpy](PF(6))(2), β(HRS) = 1280 × 10(-30) esu, ρ = 3.8; Ru(tpy)[4'-(Zn-porphyrin)ethynyl-tpy](PF(6))(2), β(HRS) = 2100 × 10(-30) esu, ρ = 3.8) to octopolar (e.g., Ru[4,4'-bis(Zn-porphyrin)ethynyl-tpy](2)(PF(6))(2), β(HRS) = 1040 × 10(-30) esu, ρ = 1.46) via structural motifs that possess intermediate values of the depolarization ratio. The chromophore design roadmap provided herein gives rise to octopolar supermolecules that feature by far the largest off-diagonal octopolar first hyperpolarizability tensor components ever reported, with the effectively octopolar Ru[4,4'-bis(Zn-porphyrin)ethynyl-tpy](2)(PF(6))(2) possessing a β(HRS) value at 1300 nm more than a factor of 3 larger than that determined for any chromophore having octopolar symmetry examined to date. Because NLO octopoles possess omnidirectional NLO responses while circumventing the electrostatic interactions that drive bulk-phase centrosymmetry for NLO dipoles at high chromophore concentrations, the advent of octopolar NLO chromophores having vastly superior β(HRS) values at technologically important wavelengths will motivate new experimental approaches to achieve acentric order in both bulk-phase and thin film structures.  相似文献   

9.
Ruthenium polypyridyl complexes have seen extensive use in solar energy applications. One of the most efficient dye-sensitized solar cells produced to date employs the dye-sensitizer N719, a ruthenium polypyridyl thiocyanate complex. Thiocyanate complexes are typically present as an inseparable mixture of N-bound and S-bound linkage isomers. Here we report the synthesis of a new complex, [Ru(terpy)(tbbpy)SCN][SbF(6)] (terpy = 2,2';6',2'-terpyridine, tbbpy = 4,4'-di-tert-butyl-2,2'-bipyridine), as a mixture of N-bound and S-bound thiocyanate linkage isomers that can be separated based on their relative solubility in ethanol. Both isomers have been characterized spectroscopically and by X-ray crystallography. At elevated temperatures the isomers equilibrate, the product being significantly enriched in the more thermodynamically stable N-bound form. Density functional theory analysis supports our experimental observation that the N-bound isomer is thermodynamically preferred, and provides insight into the isomerization mechanism.  相似文献   

10.
Liu P  Wong EL  Yuen AW  Che CM 《Organic letters》2008,10(15):3275-3278
"Iron(II) salt + 4,4',4'-trichloro-2,2':6',2'-terpyridine" is an effective catalyst for epoxidation and aziridination of alkenes and intramolecular amidation of sulfamate esters. The epoxidation of allylic-substituted cycloalkenes achieved excellent diastereoselectivities up to 90%. ESI-MS results supported the formation of iron-oxo and -imido intermediates. Derivitization of Cl 3terpy to O-PEG-OCH 3-Cl 2terpy renders the terpyridine unit to be recyclable, and the "iron(II) salt + 4,4'-dichloro-4'- O-PEG-OCH 3-2,2':6',2'-terpyridine" protocol can be reused without a significant loss of catalytic activity in the alkene epoxidation.  相似文献   

11.
Hexafluorophosphate salts of mononuclear complexes [Ru(II)Cl(L)(terpy)]+ (L = dmbpy (1); dpbpy (2), sambpy (3), and dpp (7), and binuclear complexes [Ru(II)2Cl2(dpp)(terpy)2]2+ (8) and [Ir(III)Ru(II)Cl2(dpp)(terpy)2]3+ (9) were prepared and characterized. Abbreviations of the ligands are bpy = 2,2'-bipyridine, dmbpy = 4,4'-dimethyl-2,2'-bipyridine, dpbpy = 4,4'-diphenyl-2,2'-bipyridine, dpp = 2,3-bis(2-pyridyl)pyrazine, sambpy = 4,4'-bis((S)-(+)-alpha-1-phenylethylamido)-2,2'-bipyridine, and terpy = 2,2':6',2'-terpyridine. The absorption spectra of 8 and 9 are dominated by ligand-centered bands in the UV region and by metal-to-ligand charge-transfer bands in the visible region. The details of their spectroscopic and electrochemical properties were investigated. In both binuclear complexes, it has been found that the HOMO is based on the Ru metal, and LUMO is dpp-based. [Ir(III)Ru(II)Cl2(dpp)(terpy)2]3+, indicating intense emission at room temperature, and a lifetime of 154 ns. The long lifetime of this bimetallic chromophore makes it a useful component in the design of supramolecular complexes.  相似文献   

12.
A new class of cyclometalated ruthenium complexes, Ru(C^N^N')(N^N'^N')·Cl where N^N'^N' = 4,4',4'-tricarboxy-2,2':6',2'-terpyridine and C^N^N' = substituted 6-phenyl-2,2'-bipyridine, for Dye Sensitized Solar Cells (DSSCs) is proposed. We have investigated the effect of different substituents (R = COOH, thiophen-2-yl, F and OCH(3)) on the ancillary C^N^N' ligand on the photophysical properties and performance of the six different cyclometalated ruthenium complexes in DSSCs. Using an ionic liquid based electrolyte, efficiencies up to η = 3.06% have been attained under 1 sun irradiation. Moreover, the T66 based DSSC exhibited a good stability under 1000 W m(2) light soaking at 60 °C for 24 days, retaining 92.8% of its initial efficiency.  相似文献   

13.
The synthesis and electronic properties of dinuclear ([(bipy)2Ru(I)M(terpy)][PF6]4(bipy = 2,2'-bipyridine, terpy = 2,2':6',2'-terpyridine; M = Ru, Os)) and trinuclear ([[(bipy)2Ru(I)]2M][PF6]6 M = Ru, Os, Fe, Co) complexes bridged by 4'-(2,2'-bipyridin-4-yl)-2,2':6',2'-terpyridine (I) have been investigated and are compared with those of mononuclear model complexes. The electrochemical analysis using cyclic voltammetry and differential pulse voltammetry reveals that there are no interactions in the ground state between adjacent metal centres. However, there is strong electronic communication between the 2,2'-bipyridine and 2,2':6',2'-terpyridine components of the bridging ligand. This conclusion is supported by a step-by-step reduction of the dinuclear and trinuclear complexes and the assignment of each electrochemical process to localised ligand sites within the didentate and terdentate domains. The investigation of the electronic absorption and emission spectra reveals an energy transfer in the excited state from the terminating bipy-bound metal centres to the central terpy-bound metal centre. This indicates that the bridge is able to facilitate energy transfer in the excited state between the metal centres despite the lack of interactions in the ground state.  相似文献   

14.
Transient dynamical studies of ruthenium(II) [5-(4'-ethynyl-(2,2';6',2' '-terpyridinyl))-10,20-bis(2',6'-bis(3,3-dimethyl-1-butyloxy)phenyl)porphinato]zinc(II)-(2,2';6',2' '-terpyridine)2+ bis-hexafluorophosphate (Ru-PZn), osmium(II) [5-(4'-ethynyl-(2,2';6',2' '-terpyridinyl))-10,20-bis(2',6'-bis(3,3-dimethyl-1-butyloxy)phenyl)porphinato]zinc(II)-(2,2';6',2' '-terpyridine)2+ bis-hexafluorophosphate (Os-PZn), ruthenium(II) [5-(4'-ethynyl-(2,2';6',2' '-terpyridinyl))-15-(4'-nitrophenyl)ethynyl-10,20-bis(2',6'-bis(3,3-dimethyl-1-butyloxy)phenyl)porphinato]zinc(II)-(2,2';6',2' '-terpyridine)2+ bis-hexafluorophosphate (Ru-PZn-A), osmium(II) [5-(4'-ethynyl-(2,2';6',2' '-terpyridinyl))-15-(4'-nitrophenyl)ethynyl-10,20-bis(2',6'-bis(3,3-dimethyl-1-butyloxy)phenyl)porphinato]zinc(II)-(2,2';6',2' '-terpyridine)2+ bis-hexafluorophosphate (Os-PZn-A), and ruthenium(II) [5-(4'-ethynyl-(2,2';6',2' '-terpyridinyl))-ruthenium(II)-15-(4'-ethynyl-(2,2';6',2' '-terpyridinyl))-10,20-bis(2',6'-bis(3,3-dimethyl-1-butyloxy)phenyl)porphinato]zinc(II)-bis(2,2';6',2' '-terpyridine)4+ tetrakis-hexafluorophosphate (Ru-PZn-Ru), and ruthenium(II) [5-(4'-ethynyl-(2,2';6',2' '-terpyridinyl))-osmium(II)-15-(4'-ethynyl-(2,2';6',2' '-terpyridinyl))-10,20-bis(2',6'-bis(3,3-dimethyl-1-butyloxy)phenyl)porphinato]zinc(II)-bis(2,2';6',2' '-terpyridine) tetrakis-hexafluorophosphate (Ru-PZn-Os) show that these highly conjugated supermolecular chromophores feature electronically excited states that absorb over broad NIR spectral windows with considerable oscillator strength and manifest lifetimes (1-50 mus) that are extraordinarily long relative to those of classic low band-gap organic materials. The excited-state absorptive domains of these strongly coupled multipigment ensembles can be extensively modulated. For sequential one-photon absorptive processes, these compounds evince large sigmae, sigmae/sigmag, and sigmae - sigmag values. As the combination of all these properties within single chromophoric entities have heretofore lacked precedent within the NIR, these and closely related structures may find particular utility in a variety of technologically important optical-limiting applications.  相似文献   

15.
Photoinduced charge separation is a fundamental step in photochemical energy conversion. In the design of molecularly based systems for light-to-chemical energy conversion, this step is studied through the construction of two- and three-component systems (dyads and triads) having suitable electron donor and acceptor moieties placed at specific positions on a charge-transfer chromophore. The most extensively studied chromophores in this regard are ruthenium(II) tris(diimine) systems with a common 3MLCT excited state, as well as related ruthenium(II) bis(terpyridyl) systems. This Forum contribution focuses on dyads and triads of an alternative chromophore, namely, platinum(II) di- and triimine systems having acetylide ligands. These d8 chromophores all possess a 3MLCT excited state in which the lowest unoccupied molecular orbital is a pi orbital on the heterocyclic aromatic ligand. The excited-state energies of these Pt(II) chromophores are generally higher than those found for the ruthenium(II) tris(diimine) systems, and the directionality of the charge transfer is more certain. The first platinum diimine bis(arylacetylide) triad, constructed by attaching phenothiazene donors to the arylacetylide ligands and a nitrophenyl acceptor to 5-ethynylphenanthroline of the chromophore, exhibited a charge-separated state of 75-ns duration. The first Pt(tpy)(arylacetylide)+-based triad contains a trimethoxybenzamide donor and a pyridinium acceptor and has been structurally characterized. The triad has an edge-to-edge separation between donor and acceptor fragments of 27.95 Angstroms. However, while quenching of the emission is complete for this system, transient absorption (TA) studies reveal that charge transfer does not move onto the pyridinium acceptor. A new set of triads described in detail here and having the formula [Pt(NO2phtpy)(p-C triple-bond C-C6H4CH2(PTZ-R)](PF6), where NO2phtpy = 4'-{4-[2-(4-nitrophenyl)vinyl]phenyl}-2,2';6',2'-terpyridine and PTZ = phenothiazine with R = H, OMe, possess an unsaturated linkage between the chromophore and a nitrophenyl acceptor. While the parent chromophore [Pt(ttpy)(C triple-bond CC6H5)]PF6 is brightly luminescent in a fluid solution at 298 K, the triads exhibit complete quenching of the emission, as do the related donor-chromophore (D-C) dyads. Electrochemically, the triads and D-C dyads exhibit a quasi-reversible oxidation wave corresponding to the PTZ ligand, while the R = H triad and related C-A dyad display a facile quasi-reversible reduction assignable to the acceptor. TA spectroscopy shows that one of the triads possesses a long-lived charge-separated state of approximately 230 ns.  相似文献   

16.
The relative binding energies of a series of pyridyl ligand/metal complexes of the type [M(I)L(2)](+) and [M(II)L(3)](2+) are investigated by using energy-variable collisionally activated dissociation in a quadrupole ion trap mass spectrometer. The pyridyl ligands include 1,10-phenanthroline and various alkylated analogues, 2,2'-bipyridine, 4,4'-dimethyl-2,2'-bipyridine, and 2,2':6',2' '-terpyridine, and the metal ions include cobalt, nickel, copper, zinc, cadmium, calcium, magnesium, lithium, sodium, potassium, rubidium, and cesium. The effect of the ionic size and electronic nature of the metal ion and the polarizability and degree of preorganization of the pyridyl ligands on the threshold activation voltages, and thus the relative binding energies of the complexes, are evaluated. Correlations are found between the binding constants of [M(II)L(3)](2+) complexes in aqueous solution and the threshold activation voltages of the analogous gas-phase complexes determined by collisionally activated dissociation.  相似文献   

17.
A phenomenally high molar extinction coefficient heteroleptic ruthenium(II) complex [Ru(4,4'-carboxylic acid-2,2'-bipyridine)(4,4'-(4-{4-methyl-2,5-bis[3-methylbutoxy]styryl}-2,5-bis[3-methylbutoxy]-2,2'-bipyridine)(NCS) 2] ( DCSC13) was synthesized by incorporating donor-acceptor ligands. The absorption spectrum of the DCSC13 sensitizer is dominated by metal-to-ligand charge-transfer transitions (MLCT) in the visible region, with absorption maxima appearing at 442 and 554 nm. The lowest MLCT absorption bands are red-shifted, and the molar extinction coefficients of these bands are significantly higher at 72,100 and 30,600 M(-1) cm(-1), respectively, when compared to those of the analogous [Ru(4,4'-carboxylic acid-2,2'-bipyridine)(4,4'-dimethyl-2,2'-bipyridine)(NCS)2] (N820) sensitizer. The DCSC13 complex, when anchored on nanocrystalline TiO 2 films, exhibited increased short-circuit photocurrent and consequent power-conversion efficiency when compared with the N820 sensitizer.  相似文献   

18.
The synthesis and characterization of Ru(II) terpyridine complexes derived from 4'-functionalized 2,2':6',2'-terpyridine ligands by a multi step procedure have been described. The complexes are redox-active, showing both metal-centred (oxidation) and ligand-centred (reduction) processes. The antibacterial and antifungal activity of the synthesized ruthenium(II) complexes [Ru(attpy)2](PF6)2 (attpy = 4'-(4-acryloyloxymethylphenyl)-2,2':6',2'-terpyridine); [Ru(mttpy)2](PF6)2 (mttpy = 4'-(4-methacryloyloxymethylphenyl)-2,2':6',2'- terpyridine); [Ru(mttpy)(MeOPhttpy)](PF6)2 (MeOPhttpy = 4'-(4-methoxyphenyl)-2,2':6',2'-terpyridine); and [Ru(mttpy)(ttpy)](PF6)2 (ttpy = 4'-(4-methylphenyl)-2,2':6',2'-terpyridine) were tested against four human pathogens (Proteus vulgaris, Proteus mirabilis, Pseudomonas aeruginosa and Escherichia coli) and five plant pathogens (Curvularia lunata, Fusarium oxysporum, Fusarium udum, Macrophomina phaseolina and Rhizoctonia solani) by the well diffusion method and MIC values of the complexes are reported. A biological study of the complexes indicated that the complexes [Ru(mttpy)2](PF6)2 and [Ru(mttpy)(MeOPhttpy)](PF6)2 exhibit very good activity against most of the test pathogens and their activity is better than those of some of the commercially available antibiotics like tetracycline and the fungicide carbendazim.  相似文献   

19.
Ligands in which multiple metal-binding domains are linked by a metal-containing moiety rather than a conventional organic group are described as "expanded ligands". The use of 4,4'-difunctionalised {Ru(tpy)(2)} units provides a linear spacer between metal-binding domains and we have extended this motif to expanded ligands containing two carboxylic acid metal-binding domains. In this paper, we describe the synthesis and structural characterisation of ruthenium(ii) complexes of 2,2':6',2'-terpyridine-4'-carboxylic acid and 4'-carboxyphenyl-2,2':6',2'-terpyridine. The ability of the ruthenium(ii) centre to charge compensate deprotonation of the carboxylic acid leads to Zwitterionic complexes and three representative compounds have been structurally characterised.  相似文献   

20.
Hexagonal Pd(II)- or Cd(II)-tetrakispyridinyl-based macrocycles are quantitatively self-assembled from 4'-(3-pyridinyl)-4,4'-di(tert-butyl)-2,2'?:?6',2'-terpyridine and structurally confirmed by NMR and TWIM-MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号