首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 344 毫秒
1.
通过简单的气-固反应法在氟掺杂的氧化锡导电玻璃(FTO)上成功制备了CoS对电极,并通过优化工艺,进一步确认了制备CoS的最佳浓度。通过扫描电镜、X射线衍射、拉曼光谱、X射线光电子能谱、电化学阻抗谱、循环伏安测试、Tafel极化曲线以及光电流密度-电压特性曲线分别研究了其表面形貌、物质结构、电催化性能和光电性能。结果表明,以20%乙酸钴制备的CoS对电极具有较高的电催化活性,在一个标准太阳光照条件(100m W·cm~(-2))下,其光电转换效率(PCE)为7.81%,短路电流密度(Jsc)为17.3m A·cm~(-2),开路电压(Voc)为0.74V,填充因子(FF)为0.61,显示出可与Pt对电极(7.97%)相比拟的性能。  相似文献   

2.
以邻苯二胺为表面活性剂,通过水热釜法一步制备凹形树突状PtCu双金属纳米催化剂(PtCu NCDs)。PtCu NCDs在电催化甲醇氧化(MOR)的应用中表现出非常高的活性和很强的抗有毒中间体作用。PtCu NCDs对于甲醇氧化的质量活性为(0.53 A·mg-1 Pt)是商业Pt/C(0.26 A·mg-1 Pt)的2.04倍。从比活性的CV曲线图对比发现PtCu NCDs(1.07 mA·cm-2)是商业Pt/C(0.55 mA·cm-2)的1.95倍。而且,PtCu NCDs(2.76)比商业Pt/C催化剂(1.02)表现出更高的If/Ib比值。这些优异的电催化活性可能归功于PtCu NCDs特殊的凹形树突状形貌。  相似文献   

3.
以邻苯二胺为表面活性剂,通过水热釜法一步制备凹形树突状PtCu双金属纳米催化剂(PtCu NCDs)。PtCu NCDs在电催化甲醇氧化(MOR)的应用中表现出非常高的活性和很强的抗有毒中间体作用。PtCu NCDs对于甲醇氧化的质量活性为(0.53 A·mg-1 Pt)是商业Pt/C(0.26 A·mg-1 Pt)的2.04倍。从比活性的CV曲线图对比发现PtCu NCDs(1.07 mA·cm-2)是商业Pt/C(0.55 mA·cm-2)的1.95倍。而且,PtCu NCDs(2.76)比商业Pt/C催化剂(1.02)表现出更高的If/Ib比值。这些优异的电催化活性可能归功于PtCu NCDs特殊的凹形树突状形貌。  相似文献   

4.
将三聚氰胺、RuCl3及炭黑以一定的比例分散于乙醇中,采用旋转蒸干及高温热处理合成了一种氮掺杂碳(NC)负载Ru的Ru/NC 催化剂。采用硼氢化钠液相化学还原法合成了不同 Pt、Ru 负载量的 PtRu/NC 催化剂,并用于电催化甲醇氧化反应(MOR)及电催化分解水析氢反应(HER)。结果表明,合成的催化剂中 Pt1Ru/NC(Pt、Ru的实际负载量分别为 1.14%、0.54%)表现出最优的MOR性能,质量活性达4.96 A·mg-1PtRu,且经10 000 s稳定性测试后质量活性保持在测试前的91.1%。同时,当电流密度为100 mA·cm-2时,Pt1Ru/NC在HER中表现出最低的过电位(103 mV)和最小的Tafel斜率(15.29 mV·dec-1)。通过X射线衍射(XRD)、X射线光电子能谱(XPS)、透射电子显微镜(TEM)、扫描透射电子显微镜(STEM)、电感耦合等离子体发射光谱(ICP‐OES)、STEM‐能谱(STEM‐EDS)技术PtRu/NC双金属催化剂,其具有优异催化性能的原因如下:(1) PtRu双金属纳米颗粒高度分散于NC上;(2) Pt以纳米团簇或单原子形式负载于Ru上,后负载于NC,形成了Pt‐Ru相分离结构;(3) Pt、Ru与N之间存在协同效应。  相似文献   

5.
三组Pt- Ru/C催化剂前驱体对其性能的影响   总被引:1,自引:0,他引:1  
分别以三组不同的Pt和Ru化合物为前驱体, 采用热还原法制备了Pt-Ru/C催化剂, 比较不同前驱体对催化剂性能的影响;通过XRD和TEM技术对催化剂的晶体结构及微观形貌进行了分析. 结果表明以H2PtCl6+RuCl3和自制(NH4)2PtCl6+Ru(OH)3为前驱体的催化剂Pt和Ru没有完全形成合金状态, 在Pt(111)和Pt(200)之间有Ru(101)存在;以Pt(NH3)2(NO2)2和自制含钌化合物为前驱体制备的催化剂未检测出Ru金属或其氧化物的衍射峰, Pt-Ru颗粒在载体上分散均匀, 粒径最小, 为3.7 nm. 利用玻碳电极测试了循环伏安、记时电流和阶跃电位曲线, 考核了上述催化剂对甲醇阳极催化氧化活性的影响;结果表明:以Pt(NH3)2(NO2)2和自制含钌化合物为前驱体制备的催化剂对甲醇的电催化氧化活性最高, 循环伏安曲线峰电流密度达11.5 mA•cm-2.  相似文献   

6.
采用浸渍沉淀法制备出WO3-碳纳米管(WO3-CNTs)纳米复合材料, 微波辅助乙二醇法在其表面负载活性成分Pt, 得到纳米Pt/WO3-CNTs 催化剂. 采用X射线衍射(XRD), 透射电子显微镜(TEM)和X射线光电子能谱(XPS)等测试手段对催化剂的结构和形貌进行表征, 结果表明Pt 纳米粒子为面心立方晶体结构, 粒径大小在3-5 nm之间, 均匀地分布在WO3-CNTs 纳米复合材料表面, 同时发现催化剂中的Pt 主要以金属态的形式存在. 采用循环伏安和计时电流法研究了在酸性溶液中Pt/WO3-CNTs 催化剂对甲醇的电催化氧化性能, 结果表明Pt/WO3-CNTs 催化剂比用硝酸处理的碳纳米管载铂催化剂(Pt/CNTs)对甲醇呈现出更高的电催化氧化活性和抗CO中毒性能.  相似文献   

7.
将三聚氰胺、RuCl3及炭黑以一定的比例分散于乙醇中,采用旋转蒸干及高温热处理合成了一种氮掺杂碳(NC)负载Ru的Ru/NC催化剂。采用硼氢化钠液相化学还原法合成了不同Pt、Ru负载量的PtRu/NC催化剂,并用于电催化甲醇氧化反应(MOR)及电催化分解水析氢反应(HER)。结果表明,合成的催化剂中Pt1Ru/NC(Pt、Ru的实际负载量分别为1.14%、0.54%)表现出最优的MOR性能,质量活性达4.96 A·mg-1PtRu,且经10 000 s稳定性测试后质量活性保持在测试前的91.1%。同时,当电流密度为100mA·cm-2时,Pt1Ru/NC在 HER中表现出最低的过电位(103 mV)和最小的 Tafel斜率(15.29 mV·dec-1)。通过 X射线衍射(XRD)、X射线光电子能谱(XPS)、透射电子显微镜(TEM)、扫描透射电子显微镜(STEM)、电感耦合等离子体发射光谱(ICP-OES)、STEM-能谱(STEM-EDS)技术表征了PtRu/NC双金属催化剂,其具有优异催化性能的原因如下:(1) PtRu双金属纳米颗粒高度分散于NC上;(2) Pt以纳米团簇或单原子形式负载于Ru上,后负载于NC,形成了Pt-Ru相分离结构;(3) Pt、Ru与N之间存在协同效应。  相似文献   

8.
以3-氨基丙基三甲氧基硅烷(APTS)修饰的二氧化钛为负极制备的染料敏化太阳能电池在100 mW·cm-2的模拟太阳光照下的短路电流、开路电压、光电转换效率分别为18.32 mA·cm-2、775.9 mV、9.15%. 而没有经过ATPS修饰的电池三项性能参数分别为18.08 mA·cm-2、749.9 mV、7.70%, 修饰后电池的光电转换效率提高了18.8%, 同时填充因子由0.57提高为0.64. 暗电流-电压曲线显示起始电压从-0.30 V变化到-0.40 V, 表明二氧化钛电极和电解液之间的暗反应得到了有效抑制, APTS作为阻挡层减少了二氧化钛电极表面的缺陷与表面态. 另外, 通过实验设计, 将APTS与染料层-层自组装于二氧化钛电极上, 通过X射线光电子能谱(XPS)研究了二氧化钛层、APTS、染料的作用形式. 定性与定量结果表明: APTS中的乙氧基部分脱除后形成了Si―O―Ti单桥或者双桥键, 钌染料cis-Ru(dcpyH2)2(SCN)2通过分子中的部分―COOH与APTS中的―NH2形成的静电作用力吸附在TiO2电极上. 傅里叶变换红外(FT-IR)光谱的结果进一步证明了这种分子间作用.  相似文献   

9.
选择具有强给电子能力的1,2,4-三唑为配体,成功合成了银基金属有机骨架材料(Ag-MOF)并用于电催化还原CO2反应(CO2RR)。借助粉末X射线衍射、透射电子显微镜、扫描电子显微镜、计时电流法等表征手段对材料的晶体结构、形貌和电催化CO2RR性能进行了系统的研究。与商品化的纳米Ag颗粒对比,Ag-MOF展现出更优异的电催化CO2RR产物选择性、催化活性和稳定性,在-0.9 V (vs RHE)时,CO的法拉第效率高达96.1%。当电压为-1.1 V (vs RHE)时,电流密度可达17 mA·cm-2,且电极可以稳定运行300 min。这说明通过选择合适的配体结构,可以改变催化位点周围的化学环境,从而高效将CO2转化为目标产物。  相似文献   

10.
以四氯化钛、盐酸为原料,制备出花状TiO2纳米微球,利用扫描电子显微镜(SEM)、X射线衍射(XRD)等测试方法,对样品的结构和形貌进行了表征。为了提高TiO2微球电池的光电性能,利用TiO2微球作为反射层构造了双层结构的薄膜电极,结果表明,双层结构染料敏化太阳能电池在100 mW·cm-2(1.5 G)光照条件下,短路光电流Jsc为17.64 mA·cm-2,开路光电压Voc为0.74 V,填充因子FF为0.63和光电转化效率η为8.33%。相比TiO2微球制备的太阳能电池,双层结构染料敏化太阳能电池光电转化效率提高至5.3倍。最后对电极中染料的吸附量、电极的光散射性能和电池的电化学阻抗做了进一步研究和分析,研究表明,双层结构电池增强光的捕获能力,从而提高光伏性能。  相似文献   

11.
High-performance counter electrodes for dye-sensitized solar cells (DSSCs) are fabricated with platinum-nickel oxide (Pt-NiO) nanosheets as catalytic materials. Firstly, the Pt-Ni nanosheets are synthesized via galvanic replacement reaction between pre-synthesized Ni nanosheets and an aqueous H2PtCl6 solution. Secondly, after thermal treatment in air, the Pt-Ni alloys are turned to Pt-NiO nanosheets. The related data of cyclic voltammetry, electrochemical impedance spectroscopy, and Tafel polarization reveal that Pt-NiO counter electrodes show highly catalytic activity and low charge transfer resistance. The DSSC with Pt-NiO counter electrode exhibits power conversion efficiency (PCE) of 8.40 %, which is lower than that of the DSSC containing commercial available Pt counter electrode (9.15 %) under full sunlight illumination (100 mW cm?2, AM1.5G). However, owing to the extremely high transparency of Pt-NiO counter electrode, when putting an Ag mirror behind the back side of the DSSC, the reflected light can bring great enhanced PCE (11.27 %).  相似文献   

12.
Self-assembly of platinum nanoparticles were applied to fabrication of counter electrode for dye-sensitized solar cells on conductive oxide-coated glass substrate. The present Pt electrode exhibits high exchange current density of 220 mA/cm^2, which is comparable to those prepared by electrodeposition, magnetron sputtering or thermal decomposition of platinum chloride. After analysis by transmission electron microscopy (TEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), it was found that the catalyst was structurally characterized as nanosized platinum metal clusters and was continuously arranged on electrode surface. The present nanostructure electrode had high electrocatalytic activity for the reduction of iodine in organic solution.  相似文献   

13.
A porous graphitic carbon nitride (g‐C3N4)/graphene composite was prepared by a simple hydrothermal method and explored as the counter electrode of dye‐sensitized solar cells (DSCs). The obtained g‐C3N4/graphene composite was characterized by XRD, SEM, TEM, FTIR spectroscopy, and X‐ray photoelectron spectroscopy. The results show that incorporating graphene nanosheets into g‐C3N4 forms a three‐dimensional architecture with a high surface area, porous structure, efficient electron‐transport network, and fast charge‐transfer kinetics at the g‐C3N4/graphene interfaces. These properties result in more electrocatalytic active sites and facilitate electrolyte diffusion and electron transport in the porous framework. As a result, the as‐prepared porous g‐C3N4/graphene composite exhibits an excellent electrocatalytic activity. In I?/I3? redox electrolyte, the charge‐transfer resistance of the porous g‐C3N4/graphene composite electrode is 1.8 Ω cm2, which is much lower than those of individual g‐C3N4 (70.1 Ω cm2) and graphene (32.4 Ω cm2) electrodes. This enhanced electrocatalytic performance is beneficial for improving the photovoltaic performance of DSCs. By employing the porous g‐C3N4/graphene composite as the counter electrode, the DSC achieves a conversion efficiency of 7.13 %. This efficiency is comparable to 7.37 % for a cell with a platinum counter electrode.  相似文献   

14.
采用水热法合成四硫化三钴(Co3S4)催化材料,并利用球磨和喷涂技术将其制备成对电极,结合新型无碘电解液Co2+/Co3+用于染料敏化太阳电池(dye-sensitized solar cells,简称DSCs)来研究其光电性能。测试结果显示,基于Co3S4对电极,DSCs的能量转化效率(power conversion efficiency,简称PCE)只有6.06%,远远低于Pt对电极(8.05%)。为了提高Co3S4的催化能力,采用静电纺丝技术制备碳纳米纤维(electrospun carbon nanofibers,简称ECs),结合水热法制备出不同负载量的碳纳米纤维负载四硫化三钴(Co3S4/ECs)复合催化材料用于对电极,结果表明,Co3S4/ECs的PCE最高可达(8.22±0.08)%,优于Pt对电极。  相似文献   

15.
采用水热法合成四硫化三钴(Co_3S_4)催化材料,并利用球磨和喷涂技术将其制备成对电极,结合新型无碘电解液Co~(2+)/Co~(3+)用于染料敏化太阳电池(dye-sensitized solar cells,简称DSCs)来研究其光电性能。测试结果显示,基于Co_3S_4对电极,DSCs的能量转化效率(power conversion efficiency,简称PCE)只有6.06%,远远低于Pt对电极(8.05%)。为了提高Co_3S_4的催化能力,采用静电纺丝技术制备碳纳米纤维(electrospun carbon nanofibers,简称ECs),结合水热法制备出不同负载量的碳纳米纤维负载四硫化三钴(Co_3S_4/ECs)复合催化材料用于对电极,结果表明,Co_3S_4/ECs的PCE最高可达(8.22±0.08)%,优于Pt对电极。  相似文献   

16.
In this work, multi-wall carbon nanotubes coated with polypyrrole (PPy/MWCNT) have been used as counter electrode (CE) materials for dye-sensitized solar cells (DSSCs). PPy was deposited onto fluorine-doped tin-oxide-coated glass by electrochemical polymerization of pyrrole. Three surfactants were used in the preparation of the hybrids: cationic cetyltrimethylammonium bromide, anionic sodium dodecylbenzenesulfonate (DBSNa), and non-ionic polyoxyethylene sorbitan monolaurate (Tween20). The morphologies of the PPy and PPy/MWCNT hybrids were investigated using scanning electron spectroscopy. Chemical composition of the prepared CEs was determined by X-ray photoelectron spectroscopy and Fourier-transformed infrared spectroscopy. The catalytic activity of the PPy and PPy/MWCNT layers was evaluated using cyclic voltammetry, and the photovoltaic properties of DSSCs with PPy and PPy/MWCNT CEs were characterized using IV measurements. PPy/MWCNT samples that were prepared by electrochemical polymerization showed the best results when the anionic surfactant DBSNa was used during polymerization. The photoelectric conversion efficiency of PPy/MWCNT prepared by electrochemical polymerization was 2.9%, which was 59% of that of Pt CE (4.9%).  相似文献   

17.
In this study, electrophoretic deposition (EPD) was employed to fabricate multi-wall carbon nanotube (MWCNT) counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). Firstly, raw MWCNTs were functionalized by means of an acid mixture solution and then subjected to EPD. The results obtained from Raman spectroscopy, Fourier transform infrared spectroscopy, field-emission scanning electron microscope, and cyclic voltammogram demonstrated that the defects and open ends on the MWCNTs can be obtained via chemical functionalization and thus facilitate the enhancement in the electrocatalytic activity for I3 reduction of MWCNT CEs. In addition to optimizing chemical functionalization of MWCNTs surface, the optimal thickness of MWCNT CEs prepared by EPD was also investigated. Additionally, consecutive cyclic voltammetric tests demonstrated that the MWCNT CE fabricated by EPD possessed excellent electrochemical stability. In comparison with MWCNT CEs fabricated by tape-casting approach, MWCNT CEs prepared by EPD presented a superior adhesion between MWCNT deposits and conducting glass substrates. Therefore, MWCNT CEs fabricated by EPD can be of great potential for use in low-cost plastic DSSCs.  相似文献   

18.
Multi-component tungsten carbide-based hybrid materials featuring different heteroatom dopants coated with X,N dual-doped carbon layers (X/W2C@X,N-C, XWXNC) were prepared by selecting Keggin-type polyoxometalates (POMs) (NH4)n[XW12O40] (X=Co, Si, Ge, B, and P) and dicyandiamide (DCA) as precursors. The electrocatalytic activity of these nanocomposites as counter electrode (CE) catalysts for dye-sensitized solar cells (DSSCs) was systematically investigated. Structure characterizations show that X,N heteroatoms were successfully introduced into the W2C and carbon frameworks. The obtained X,N dual-doped carbon layers were modified and loaded with W2C nanoparticles, promoting the improvement of catalytic performance by a synergistic effect. The consequence of photoelectric conversion efficiency (PCE) is CoWCoNC (6.68 %)>SiWSiNC (6.56 %)>GeWGeNC (6.49 %)>BWBNC (6.45 %)>PWPNC (6.20 %)>WNC (6.05 %). With the increase in electronegativity of the dopants, the photovoltaic performance decreases in a reverse order. This work provides a shortcut to the rational design of highly efficient and cost-effective catalysts for DSSCs.  相似文献   

19.
Unique ZnS nanobuns decorated with reduced graphene oxide (ROO) was synthesized and found to exhibit a synergetic effect as a highly efficient and low-cost counter electrode (CE) in dye-sensitized solar cells (DSCs). Using this ZnS-ROO CE, a power conversion efficiency (PCE) of 7.03% was achieved. This value was 53% and 41 % higher than those of pure ZnS and ROO CEs, respectively. The ZnS-ROO nanocomposite is indeed an efficient and cost-effective Pt-like alternative for iodine reduction reaction.  相似文献   

20.
采用简易溶剂热法合成直径为150-250 nm的Cu2SnSe3纳米颗粒.以Cu2SnSe3"墨水"为前驱体采用滴落涂布法在掺氟二氧化锡基板上沉积Cu2SnSe3薄膜作为染料敏化太阳能电池(DSSC)对电极.利用场发射扫描电镜(FESEM)、透射电镜(TEM)、X射线衍射(XRD)、拉曼光谱(Raman)、能谱仪(EDS)等对Cu2SnSe3纳米颗粒的形貌、结构和组成进行表征.结果表明:产物纯净无杂项且符合化学计量比.以Cu2SnSe3为对电极的DSSC转化效率为7.75%,与铂对电极DSSC效率相当(7.21%).研究表明,DSSC的光电流密度和影响因子与Cu2SnSe3薄膜厚度密切相关,这是由于不同厚度的Cu2SnSe3薄膜作对电极所对应的催化位置数目和电阻值不同.电化学阻抗谱研究说明,Cu2SnSe3因具有类似铂良好的电催化性能而适合用作染料敏化太阳能电池对电极材料.本文以Cu2SnSe3代替贵金属铂,提供了一种廉价制备高效染料敏化太阳能电池对电极的新方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号