首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Karayel  Arzu 《Structural chemistry》2021,32(3):1247-1259
Structural Chemistry - A detailed study of the tautomeric properties, the conformations, and the mechanism behind the anti-cancer properties of...  相似文献   

2.
3.
Singh  Aditi  Goyal  Sukriti  Jamal  Salma  Subramani  Bala  Das  Mriganko  Admane  Nikita  Grover  Abhinav 《Structural chemistry》2016,27(3):993-1003

Tumor suppressor protein p53 maintains integrity of genome and regulates the genes responsible for DNA repair mechanism, apoptosis as well as cell cycle and growth arrest. As with murine double minute 2 (MDM2), the human homolog HDM2 is a principal cellular antagonist of p53. In unstressed cells, cellular levels of p53 and HDM2 are maintained in an autoregulatory manner in which both mutually control cellular levels of each other. About half of the human cancers express wild-type p53 protein that is antagonized by over-expressed HDM2. Restoring p53 function via HDM2 antagonists is a leading therapeutic approach for treating a variety of tumors. In this study, we have developed a novel statistically sound group-based QSAR (GQSAR) model using piperidine-derived compounds that have been validated experimentally to inhibit p53–HDM2 interaction. On the basis of developed GQSAR model, a combinatorial library of molecules was prepared and its activity was predicted. These molecules were then docked to HDM2, and two top-scoring molecules possessing a binding energy of ?6.639 and ?6.305 kcal/mol were selected for further study. These molecules and their binding poses were analyzed further via molecular dynamic simulations. In this study, we report two lead compounds as potent HDM2 inhibitors and also provide an insight into mechanism of interaction of the lead compounds to HDM2 target.

  相似文献   

4.
At present, chemotherapy seems to be the main weapon in the arsenal of remedies for the ongoing crusade against AIDS. The mode of binding of the TIBO family of inhibitors has been of interest because these compounds do not fit the two-hinged-ring model as generally observed in the NNRTIs. Flexible docking simulations were performed with a series of 53 TIBO derivatives as NNRTIs. Binding preferences as well as the structural and energetic factors associated with them were studied. A good correlation (r 2 = 0.849, q 2 = 0.843) was observed between the biological activity and binding affinity of the compounds which suggest that the identified binding conformations of these inhibitors are reliable. Further screening of PubChem database yielded novel scaffolds. Our studies suggest that modifications to the TIBO group of inhibitors might enhance their binding efficacy and hence, potentially, their therapeutic utility.  相似文献   

5.
Structural Chemistry - In this paper, a combined approach based on a k-means algorithm and statistical analysis has been applied successfully to classify 500 cytotoxic agents using 21 molecular...  相似文献   

6.
HIV-1 RT is one of the key enzymes in the duplication of HIV-1. Inhibitors of HIV-1 RT are classified as nonnucleoside RT inhibitors (NNRTIs) and nucleoside analogues. NNRTIs bind in a region not associated with the active site of the enzyme. Within the NNRTI category, there is a set of inhibitors commonly referred to as TIBO inhibitors. Fifty TIBO inhibitors were used in the work to build 3-D QSAR models. The two known crystal structures of complexes are used to investigate and validate the docking protocol. The results show that the docking simulations reproduce the crystal complexes very well with RMSDs of approximately 1 A and approximately 0.6 A for 1REV and 1COU, respectively. The alignment of molecules and "active" conformation selection are the key to a successful 3D-QSAR model by CoMFA. The flexible docking (Autodock3) was used on determination of "active" conformation and molecular alignment, and CoMFA and CoMSIA were used to develop 3D-QSAR models of 50 TIBOs in the work. The 3D-QSAR models demonstrate a good ability to predict the activity of studied compounds (r2 = 0.972, 0.944, q2 = 0.704, 0.776). It is shown that the steric and electrostatic properties predicted by CoMFA contours can be related to the binding structure of the complex. The results demonstrate that the combination of ligand-based and receptor-based modeling is a powerful approach to build 3D-QSAR models.  相似文献   

7.
Some promising 4-thiazolone derivatives as lipoxygenase inhibitors were designed, synthesized, characterized and evaluated for anti-inflammatory activity and respective ulcerogenic liabilities. Compounds (1b, 1e, 3b, and 3e) exhibited considerable in vivo anti-inflammatory activity (57.61, 79.35, 75.00, and 79.35%) against carrageenan-induced rat paw edema model, whereas compounds (1e, 3b, and 3e) were found active against the arachidonic acid-induced paw edema model (55.38, 55.38, and 58.46%). The most potent compound (3e) exhibited lesser ulcerogenic liability compared to the standard diclofenac and zileuton. Further, the promising compounds (1e and 3e) were evaluated for in vitro lipoxygenase (LOX; IC50?=?12.98 µM and IC50?=?12.67 µM) and cyclooxygenase (COX) inhibition assay (COX-1; IC50?>?50 µM and, COX-2; IC50?>?50 µM). The enzyme kinetics of compound 3e was evaluated against LOX enzyme and supported by in silico molecular docking and molecular dynamics simulations studies. Overall, the results substantiated that 5-benzylidene-2-phenyl-4-thiazolones are promising pharmacophore for anti-inflammatory activity.  相似文献   

8.
9.
Zhang  Heng  Gu  Xi  Meng  Churen  Zhou  Di  Chen  Gang  Wang  Jian  Liu  Yang  Li  Ning 《Structural chemistry》2021,32(3):1005-1018
Structural Chemistry - B-cell lymphoma-extra large (Bcl-xL) can inhibit apoptosis via heterodimerization with pro-apoptotic Bcl-2 family proteins, and is over-expressed in many different types of...  相似文献   

10.
Research on Chemical Intermediates - A series of novel N-substituted rhodanines 6a–g were synthesized by a microwave synthesizer, and evaluated for their anti-proliferative activity. Most of...  相似文献   

11.
Depression is a critical mood disorder that affects millions of patients. Available therapeutic antidepressant agents are associated with several undesirable side effects. Recently, it has been shown that Neurokinin 1 receptor (NK1R) antagonists can potentiate the antidepressant effects of serotonin-selective reuptake inhibitors (SSRIs). In this study, a series of phenyl piperidine derivatives as potent dual NK1R antagonists/serotonin transporter (SERT) inhibitors were applied to quantitative structure–activity relationship (QSAR) analysis. A collection of chemometrics methods such as multiple linear regression (MLR), factor analysis–based multiple linear regression (FA-MLR), principal component regression (PCR), and partial least squared combined with genetic algorithm for variable selection (GA-PLS) were applied to make relations between structural characteristics and NK1R antagonism/SERT inhibitory of these compounds. The best multiple linear regression equation was obtained from GA-PLS and MLR for NK1R and SERT, respectively. Based on the resulted model, an in silico-screening study was also conducted and new potent lead compounds based on new structural patterns were designed for both targets. Molecular docking studies of these compounds on both targets were also conducted and encouraging results were acquired. There was a good correlation between QSAR and docking results. The results obtained from validated docking studies indicate that the important amino acids inside the active site of the cavity that are responsible for essential interactions are Glu33, Asp395 and Arg26 for SERT and Ala30, Lys7, Asp31, Phe5 and Tyr82 for NK1R receptors.  相似文献   

12.
mTOR has become a promising target for many types of cancer like breast, lung and renal cell carcinoma. CoMFA, CoMSIA, Topomer CoMFA and HQSAR were performed on the series of 39 triazine morpholino derivatives. CoMFA analysis showed q2 value of 0.735, r2cv value of 0.722 and r2pred value of 0.769. CoMSIA analysis (SEHD) showed q2 value of 0.761, r2cv value of 0.775 and r2pred value of 0.651. Topomer CoMFA analysis showed q2 value of 0.693, r2 (conventional correlation coefficient) value of 0.940 and r2pred value of 0.720. HQSAR analysis showed q2,r2and r2pred values of 0.694, 0.920 and 0.750, respectively. HQSAR analysis with the combination of atomic number (A), bond type (B) and atomic connections showed q2 and r2 values of 0.655 and 0.891, respectively. Contour maps from all studies provided significant insights. Molecular docking studies with molecular dynamics simulations were carried out on the highly potent compound 36. Furthermore, four acridine derivatives were designed and docking results of these designed compounds showed the same interactions as that of the standard PI-103 which proved the efficiency of 3D-QSAR and MD/MS study. In future, this study might be useful prior to synthesis for the designing of novel mTOR inhibitors.  相似文献   

13.
Serotonin receptor, 5-HT1AR, agonists and partial agonists have established drug candidates for psychiatric and neurologic disorders. Recently, we reported the synthesis and evaluation of arylpiperazine derivatives of 3,5-dioxo-(2H,4H)-1,2,4-triazine as 5-HT1AR ligands. Herein, we generated a homology model of the receptor and docked the ligands against it, predicted the stability of the receptor model and complexes by molecular dynamics and generated a 3D-QSAR model for the arylpiperazine derivatives of 3,5-dioxo-(2H,4H)-1,2,4-triazine. The model suggests the hydrophobic part that arises from the aromatic region and the electron withdrawing parts play a vital role in the agonist activity of the lead molecules.  相似文献   

14.
15.
16.
In an attempt to rationalize the search for new potential anti-inflammatory compounds on the COX-2 enzyme, we carried out an in silico protocol that successfully combines the prediction of physicochemical and pharmacokinetic properties, molecular docking, molecular dynamic simulation, and free energy calculation. Starting from a small library of compounds synthesized previously, it was found that 70% of the compounds analyzed satisfy with the associated values to physicochemical principles as key evaluation parameters for the drug-likeness; all the compounds presented good gastrointestinal absorption and cerebral permeability and they showed an interaction with the Arg 106 residue of the COX-2 isoenzyme. Finally, it was obtained that compound 3ab has a binding mode, binding energy, and stability in the active site of COX-2 like the reference drug celecoxib, suggesting that this compound could become a powerful candidate in the inhibition of the COX-2 enzyme. In addition, we realized the crystallographic analysis of compounds 3j, 3r, and 3t defining the crystal parameters and the Packing interactions.  相似文献   

17.
Developing chemicals that inhibit checkpoint kinase 1 (Chk1) is a promising adjuvant therapeutic to improve the efficacy and selectivity of DNA-targeting agents. Reliable prediction of binding-free energy and binding affinity of Chk1 inhibitors can provide a guide for rational drug design. In this study, multiple docking strategies and Prime/Molecular Mechanics Generalized Born Surface Area (Prime/MM-GBSA) calculation were applied to predict the binding mode and free energy for a series of benzoisoquinolinones as Chk1 inhibitors. Reliable docking results were obtained using induced-fit docking and quantum mechanics/molecular mechanics (QM/MM) docking, which showed superior performance on both ligand binding pose and docking score accuracy to the rigid-receptor docking. Then, the Prime/MM-GBSA method based on the docking complex was used to predict the binding-free energy. The combined use of QM/MM docking and Prime/MM-GBSA method could give a high correlation between the predicted binding-free energy and experimentally determined pIC(50) . The molecular docking combined with Prime/MM-GBSA simulation can not only be used to rapidly and accurately predict the binding-free energy of novel Chk1 inhibitors but also provide a novel strategy for lead discovery and optimization targeting Chk1.  相似文献   

18.
Benzimidazole is an important heterocyclic organic compound which has a structural analogy to nucleotides found in human body and hence is an important pharmacophore in medicinal chemistry. The anti-cancer activities for a diverse set of benzimidazole as anti-cancer agents against breast cancer cell line (MCF7) assay have been subjected to 3D-QSAR (3-Dimensional Quantitative Structural-Activity Relationship) studies. Both CoMFA and CoMSIA models exhibit significant results in terms of statistical parameters as determination coefficients R2 > 0.9 and Leave One Out cross-validation determination coefficients Q2> 6. The predictive quality of both 3D QSAR models have been assessed by external validation and Y-randomization test. Five new compounds have been designed and predicted by in silico ADMET method. In the second part, we have used the docking molecular and simulation dynamics (MD) to investigate the bonding interactions and stability of the designed compounds into the Pin1. Then, we have compared them to Trastuzumab and Tamoxifen as a standard inhibitors drug of breast cancer. The designed compounds form stable hydrogen and hydrophobic bonding interactions with the residues Lys63, Gln131, Ser154, Arg 68 and Arg69 of Pin1 receptor during 100 ns as a time of the simulation. The obtained results showed that the new benzimidazole are useful as a template for future design of more potent inhibitors against breast cancer cell lines (MCF7).  相似文献   

19.
3-Phosphoinositide-dependent protein kinase-1 (PDK1) is a promising target for developing novel anticancer drugs. In order to understand the structure-activity correlation of indolinone-based PDK1 inhibitors, we have carried out a combined molecular docking and three-dimensional quantitative structure-activity relationship (3D-QSAR) modeling study. The study has resulted in two types of satisfactory 3D-QSAR models, including the CoMFA model (r(2)=0.907; q(2)=0.737) and CoMSIA model (r(2)=0.991; q(2)=0.824), for predicting the biological activity of new compounds. The detailed microscopic structures of PDK1 binding with inhibitors have been studied by molecular docking. We have also developed docking-based 3D-QSAR models (CoMFA with q(2)=0.729; CoMSIA with q(2)=0.79). The contour maps obtained from the 3D-QSAR models in combination with the docked binding structures help to better interpret the structure-activity relationship. All of the structural insights obtained from both the 3D-QSAR contour maps and molecular docking are consistent with the available experimental activity data. This is the first report on 3D-QSAR modeling of PDK1 inhibitors. The satisfactory results strongly suggest that the developed 3D-QSAR models and the obtained PDK1-inhibitor binding structures are reasonable for the prediction of the activity of new inhibitors and in future drug design.  相似文献   

20.
Structural Chemistry - Since HIV-1 integrase makes use of host genome machinery to accomplish the replication process, where LEDGF/p75 (a cellular cofactor) executes in the lentiviral integration...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号