首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A PVC membrane electrode based on bis-2-thiophenal propanediamine (TPDA) coated directly on graphite is described. The electrode exhibits a Nernstian response for Cu2+ over a very wide concentration range (1.0×10−1 to 6.0×10−8 M) with a detection limit of 3.0×10−8 M (2.56 ng ml−1). It has a fast response time and can be used for at least 2 months without any major deviation. The proposed sensor revealed very good selectivities for Cu2+ over a wide variety of other metal ions and could be used in the pH range of 3.0–7.0. It was successfully used for direct determination of copper in black tea and as an indicator electrode in potentiometric titration of copper ion.  相似文献   

2.
Singh AK  Mehtab S  Saxena P 《Talanta》2006,69(5):1143-1148
A novel bromide ion-selective PVC membrane sensor based on 2,3,10,11-tetraphenyl-1,4,9,12-tetraazacyclohexadeca-1,3,9,11-tetraene zinc(II)complex (I) as carrier has been developed. The electrode exhibited wide working concentration range 2.2 × 10−6 to 1.0 × 10−1 M and a limit of detection as 1.4 × 10−6 M with a Nernstian slope of 59.2 ± 0.5 mV per decade. The response time of electrode was 20 s over entire concentration range. The electrode possesses the advantages of low resistance, fast response and good selectivities for bromide over a variety of other anions and could be used in a pH range of 3.5–9.5. It was successfully used as an indicator electrode in the potentiometric titration of bromide ions with silver ion and also in the determination of bromide in real samples.  相似文献   

3.
Four different 9,10-anthraquinone derivatives were studied to characterize their abilities as lead ion carrier in PVC membrane electrodes. The electrode based on 1,8-dihydroxy-2,7-bis(prop-2′-enyl)-9,10-anthraquinone exhibits a Nernstian response for Pb2+ ions over a wide concentration range (2.0×10−3–2.0×10−6 M). The response time of the sensor is 30 s and the membrane can be used for more than four months without observing any deviation. The electrode revealed comparatively good selectivities with respect to alkali, alkaline earth and some transition and heavy metal ions. It was used as an indicator electrode in potentiometric titration of sulfate ions with a lead ion solution.  相似文献   

4.
A new modified carbon paste electrode (CPE) based on a recently synthesized Schiff base complex of Fe(III) as a suitable carrier for I ion is described. The electrode exhibits a super Nernstian slope of 71.0±0.3 mV per decade for I ion over a wide concentration range from 1.0×10−6 to 5.0×10−1 M, with a low detection limit of 6.5×10−7 M. It has a relatively fast response time, a satisfactory reproducibility and relatively long life time. The proposed sensor shows a fairly good selectivity toward I ion in comparison to other common anions. The potentiometric response is independent of the pH of the test solution in the pH range 3.5–10.0. Spectrophotometric studies confirmed the redox-type response mechanism of the electrode toward iodide ion. The proposed electrode was used as an indicator electrode in potentiometric titration of iodide ion.  相似文献   

5.
A μ-bis(tridentate) ligand named 2-phenyl-1,3-bis[3′-aza-4′-(2′-hydroxyphenyl)-prop-4-en-1′-yl]-1,3-imidazolidine (I) has been synthesized and scrutinized to develop iron(III)-selective sensors. The addition of sodium tetraphenyl borate and various plasticizers, viz., chloronaphthalene, dioctylphthalate, o-nitrophenyl octyl ether and dibutylphthalate has been used to substantially improve the performance of the sensors. The membranes of various compositions of the ligand were investigated and it was found that the best performance was obtained for the membrane of composition (I) (10 mg):PVC (150 mg):chloronaphthalene (200 mg):sodium tetraphenyl borate (9 mg). The sensor showed a linear potential response to iron(III) over wide concentration range 6.3 × 10−6 to 1.0 × 10−1 M (detection limit 5.0 × 10−6 M) with Nernstian slope (20.0 mV/decade of activity) between pH 3.5 and 5.5 with a quick response time of 15 s. The potentiometric selectivity coefficient values as determined by match potential method (MPM) indicate excellent selectivity for Fe3+ ions over interfering cations. The sensor exhibits adequate life of 2 months with good reproducibility. The sensor could be used in direct potentiometry.  相似文献   

6.
PVC-based membranes of meso-tetrakis-{4-[tris-(4-allyl dimethylsilyl-phenyl)-silyl]-phenyl}porphyrin (I) and (sal)2trien (II) as electroactive material with dioctylphthalate (DOP), tri-n-butylphosphate (TBP), chloronapthalene (CN), dibutylphthalate (DBP) and dibutyl(butyl) phosphonate (DBBP) as plasticising solvent mediators have been found to act as Ni2+ selective sensor. The best performance was obtained with the sensor having a membrane of composition of I: sodium tetraphenyl borate: PVC in the ratio 5:5:150. The sensor exhibits Nernstian response in the activity range 2.5 × 10−6 to 1.0 × 10−1 M, performs satisfactorily over wide pH range (2–5.5) with a fast response time (8 s). The sensor was found to work satisfactorily in partially non-aqueous media up to 20% (v/v) content of methanol or ethanol and acetone and could be used over a period of 4 months. Potentiometric selectivity coefficients determined by matched potential method (MPM) indicate excellent selectivity for Ni2+ ions. The sensors could be used successfully in the estimation of nickel in different brand of chocolates and also as an indicator electrode in potentiometric titration.  相似文献   

7.
A PVC membrane electrode for lead ions based on 5,5′-dithiobis-(2-nitrobenzoic acid) as membrane carrier was prepared. The electrode exhibits a Nernstian response for Pb2+ over a wide concentration range (1.0×10−2–4.0×10−6 M). It has a relatively fast response time and can be used for at least 3 months without any divergence in potentials. The proposed electrode revealed good selectivities for Pb2+ over a wide variety of other metal ions and could be used in a pH range of 2.0–7.0. It was used as an indicator electrode in potentiometric titration of lead ions and in direct determination of lead in water samples.  相似文献   

8.
Huang F  Jin G  Liu Y  Kong J 《Talanta》2008,74(5):1435-1441
Phenylephrine (i.e. PHE) and chlorprothixene (i.e. CPT), two effective and important antipsychotic drugs with low redox activity, were found generating an irreversible anodic peak at about +0.89 V (vs. SCE) and +1.04 V in 0.05 M HAc–NaAc (pH 5.0) or NH2CH2COOH–HCl (pH 2.4) buffer solution at poly(4-aminobenzene sulfonic acid) modified glassy carbon electrode (i.e. poly(4-ABSA)/GC), respectively. Sensitive and quantitative measurement for them based on the anodic peaks was established under the optimum conditions. The anodic peak current was linear to PHE and CPT concentrations from 1 × 10−7 to 1.5 × 10−5 M and 2 × 10−6 to 4.5 × 10−5 M, the detection limits obtained were 1 × 10−8 and 1 × 10−7 M, separately. The modified electrode exhibited some excellent characteristics including easy regeneration, high stability, good reproducibility and selectivity. The method proposed was successfully applied to the determination of PHE and CPT in drug injections or tablets and proved to be reliable compared with ultraviolet spectrophotometry. The modified electrode was characterized by electrochemical methods.  相似文献   

9.
In this work, nickel hexacyanoferrate-modified electrode was developed to determine potassium ions in biodiesel by potentiometry. The modified electrodes exhibit a linear response to potassium ions in the concentration range of 4.0 × 10−5 to 1.0 × 10−2 mol L−1, with a detection limit of 1.9 × 10−5 mol L−1, and a near-Nernstian slope (53–55 mV per decade) at 25 °C. The method developed in this work was compared with flame photometry and the potassium concentration found in biodiesel showed that the modified electrode method gives results similar to those obtained by flame photometry.  相似文献   

10.
Amperometric enzyme biosensors for the determination of acetylcholine (ACh) and choline (Ch) have been described. For the fabrication of the biosensors, N-acetylaniline (nAN) was first electropolymerized on a Pt electrode surface to be served as a permselective layer to reject interferences. Bovine serum albumin (BSA) and choline oxidase (CHOD) were co-immobilized in a zinc oxide (ZnO) sol–gel membrane on the above modified Pt electrode for a Ch sensor, or CHOD, acetylcholinesterase (AChE) and BSA immobilized together for an ACh/Ch sensor. The poly (N-acetylaniline) (pnAN) film was the first time used for an ACh/Ch sensor and found to have excellent anti-interference ability, and the BSA in the sol–gel can improve the stability and activity of the enzymes. Amperometric detection of ACh and Ch were realized at an applied potential of +0.6 V versus SCE. The resulting sensors were characterized by fast response, expanded linear range and low interference from endogenous electroactive species. Temperature and pH dependence and stability of the sensor were investigated. The optimal ACh/Ch sensor gave a linear response range of 1.0 × 10−6 to 1.5 × 10−3 M to ACh with a detection limit (S/N = 3) of 6.0 × 10−7 M and a linear response range up to 1.6 × 10−3 M to Ch with a detection limit of 5.0 × 10−7 M. The biosensor demonstrated a 95% response within less than 10 s.  相似文献   

11.
Pei J  Li XY 《Talanta》2000,51(6):2379-1115
A thin film of mixed-valent CuPtCl6 is deposited on a glassy carbon electrode by continuous cyclic scanning in a solution containing 3×10−3 M CuCl2+3×10−3 M K2PtCl6+1 M KCl in the potential range from 700 to −800 mV. The cyclic voltammetry is used to study the electrochemical behaviors of nitrite on CuPtCl6/GC modified electrode and the electrode displays a good catalytic activity toward the oxidation of nitrite. The effects of the film thickness, pH, the electrode stability and precision have been evaluated. Experiments in flow-injection analysis are performed to characterize the electrode as an amperometric sensor for the detection of nitrite. The modified electrode shows a wide dynamic range, quite a low detection limit and short response time. The linear relationship between the flow-injection peak currents and the concentrations of nitrite is at a range of 1×10−7–2×10−3 M with a detection limit of 5×10−8 M.  相似文献   

12.
Three different mixed aza-thioether crowns containing a 1,10-phenanthroline sub-unit were investigated to characterize their abilities as copper(II) ion carriers in PVC-membrane electrodes. The electrode based on L1 exhibited a Nernstian response for Cu2+ ions over a wide concentration range (2×10−1 to 1×10−5 M) with a limit of detection of 8.0×10−6 M (0.5 p.p.m.). The response time of sensor is 15 s, and the membrane can be used for more than 3 months without observing any deviation. The electrode revealed comparatively good selectivities with respect to many alkali, alkaline earth, transition and heavy metal ions, and could be used in a pH range of 2.5–5.5. It was applied to the direct determination and potentiometric titration of the copper(II) ion.  相似文献   

13.
Crew A  Cowell DC  Hart JP 《Talanta》2008,75(5):1221-1226
This paper reports on the development of a novel electrochemical assay for Zn2+ in human sweat, which involves the use of disposable screen-printed carbon electrodes (SPCEs). Initially, SPCEs were used in conjunction with cyclic voltammetry to study the redox characteristics of Zn2+ in a selection of supporting electrolytes. The best defined cathodic and anodic peaks were obtained with 0.1 M NaCl/0.1 M acetate buffer pH 6.0. The anodic peak was sharp and symmetrical which is typical for the oxidation of a thin metal film on the electrode surface. This behaviour was exploited in the development of a differential pulse anodic stripping voltammetric (DPASV) assay for zinc. It was shown that a deposition potential of −1.6 V versus Ag/AgCl and deposition time of 60 s with stirring (10 s equilibration) produced a well-defined stripping peak with Epa = −1.2 V versus Ag/AgCl. Using these conditions, the calibration plot was linear over the range 1 × 10−8 to 5 × 10−6 M Zn2+. The precision was examined by carrying out six replicate measurements at a concentration of 2 × 10−6 M; the coefficient of variation was calculated to be 5.6%. The method was applied to the determination of the analyte in sweat from 10 human volunteers. The concentrations were between 0.39 and 1.56 μg/mL, which agrees well with previously reported values. This simple, low-cost sensitive assay should have application in biomedical studies and for stress and fatigue in sports studies.  相似文献   

14.
Trace amounts of nickel(II) can function as a trigger (=reaction initiator) in an autocatalytic reaction with the sodium sulfite/hydrogen peroxide system. Based on this finding, sub-μg L−1 levels of nickel(II) were determined by a time measurement using the autocatalytic reaction. The detection range using the above method was 10−9–10−5 M, the detection limit (3σ) was 8.1 × 10−10 M (0.047 μg L−1), and the relative standard deviation was 2.66% at nickel(II) concentration of 10−7 M (n = 7). This method was applied to length detection-flow injection analysis. The detection range for the flow injection analysis was 2 × 10−9–2 × 10−3 M. The detection limit (3σ) was 1.4 × 10−9 M (0.082 μg L−1), and the relative standard deviation was 1.86 at initial nickel(II) concentration of 10−6 M (n = 7).  相似文献   

15.
Li Liu  Jun-feng Song  Peng-fei Yu  Bin Cui 《Talanta》2007,71(5):1842-1848
A novel voltammetric method for the determination of β-d-glucose (GO) is proposed based on the reduction of Cu(II) ion in Cu(II)(NH3)42+–GO complex at lanthanum(III) hydroxide nanowires (LNWs) modified carbon paste electrode (LNWs/CPE). In 0.1 mol L−1 NH3·H2O–NH4Cl (pH 9.8) buffer containing 5.0 × 10−5 mol L−1 Cu(II) ion, the sensitive reduction peak of Cu(II)(NH3)42+–GO complex was observed at −0.17 V (versus, SCE), which was mainly ascribed to both the increase of efficient electrode surface and the selective coordination of La(III) in LNW to GO. The increment of peak current obtained by deducting the reduction peak current of the Cu(II) ion from that of the Cu(II)(NH3)42+–GO complex was rectilinear with GO concentration in the range of 8.0 × 10−7 to 2.0 × 10−5 mol L−1, with a detection limit of 3.5 × 10−7 mol L−1. A 500-fold of sucrose and amylam, 100-fold of ascorbic acid, 120-fold of uric acid as well as gluconic acid did not interfere with 1.0 × 10−5 mol L−1 GO determination.  相似文献   

16.
Chi Y  Xie J  Chen G 《Talanta》2006,68(5):1544-1549
The electrochemiluminescent (ECL) response of allopurinol was studied in aqueous media over a wide pH range (pH 2–13) using flow injection (FI) analysis. It was revealed that allopurinol itself had no ECL activity, but could greatly enhance the ECL of Ru(bpy)32+ in alkaline media giving rise to a sensitive FI-ECL response. The effects of experimental conditions including the mode of applied voltage signal, the potential of working electrode, pH value, the flow rate of carrier solution, and the concentration of Ru(bpy)32+ and allopurinol on the ECL intensity were investigated in detail. The most sensitive FI-ECL response of allopurinol was found at pH 12.0, where the FIA-ECL intensity showed a linear relationship with concentration of allopurinol in the range 1 × 10−8 mol L−1 to 5 × 10−7 mol L−1, and the detection limit was 5 × 10−9 mol L−1.  相似文献   

17.
A biomimetic potentiometric sensor for the specific recognition of methylphosphonic acid (MPA), the degradation product of nerve agents sarin, soman, VX, etc., was designed. This involves the preparation of MPA imprinted polymer particles and removal of the template by soxhlet extraction. Subsequently, the leached MIP particles were dispersed in 2-nitrophenyloctyl ether (plasticizer) and embedded in polyvinyl chloride matrix. The sensor responds to MPA in the concentration range 5 × 10−8 to 1 × 10−4 and 1 × 10−3 to 1 × 10−1 M with a detection limit of 5 × 10−8 M. The selectivity of the sensor has been tested with respect to chemical analogues such as phosphoric acid, sodium dihydrogen phosphate, organophosphorous pesticide and triazine herbicides. The utility of the sensor was tested for field monitoring of MPA in spiked ground water.  相似文献   

18.
Gupta VK  Goyal RN  Al Khayat M  Kumar P  Bachheti N 《Talanta》2006,69(5):1149-1155
Poly(vinyl chloride) (PVC) based membranes containing 4-tert-butylcalix[4]arene (I) as an electroactive material alongwith anion excluder sodiumtetraphenylborate (NaTPB) and plasticizer tri-butylphosphate (TBP) have been developed to fabricate a new zinc-selective sensor. Out of various compositions, the best performance was exhibited by the membrane having I, NaTPB, TBP and PVC in the ratio 8:5:100:200 (w/w). The sensor works well in the concentration range 9.8 × 10−6 to 1.0 × 10−1 mol dm−3 with a near-Nernstian slope of 28.0 ± 1.0 mV/decade of activity. The detection limit is down to 5.0 × 10−7 mol dm−3. The working pH range of this sensor is 2.5–4.3 and it works well in partially non-aqueous medium up to 15% (v/v) (methanol, ethanol and acetone). It exhibits a fast response time of 30 s and could be used for more than four months without any considerable change in response characteristics. It has excellent selectivity for Zn(II) over other mono-, bi- and trivalent cations which have been reported to cause interference in the working of other sensors. It has been successfully used as an indicator electrode in the potentiometric titration of Zn(II) against EDTA and also to estimate zinc ions in industrial waste waters.  相似文献   

19.
Jain AK  Gupta VK  Singh LP  Raisoni JR 《Talanta》2005,66(5):1355-1361
Acetylacetone, ethylacetoacetate and salicyldehyde, are reported to form chelates with copper of high stability as compared to other metals. Therefore, PVC based membranes of bis[acetylacetonato] Cu(II) (A), bis[ethylacetoacetate] Cu(II) (B) and bis[salicyldehyde] Cu(II) (C) have been investigated as copper(II) selective sensors. The addition of sodium tetraphenylborate and various plasticizers, viz., DOS, TEHP, DOP, DBP and TBP have been found to substantially improve the performance of the sensors. The membranes of various compositions of the three chelates were investigated and it was found that the best performance was obtained for the membrane of composition A (1%): PVC (33%): TBP (65%): NaTPB (1%). The sensor shows a linear potential response to Cu(II) over wide concentration range 2.0 × 10−6 to 1.0 × 10−1 M (detection limit 0.1 ppm) with Nernstian compliance (29.3 mV decade−1 of activity) between pH 2.6 and 6.0 with a fast response time of 9 s. The potentiometric selectivity coefficient values as determined by match potential method (MPM) indicate excellent selectivity for Cu2+ ions over interfering cations. The sensor exhibits adequate shelf life (3 months) with good reproducibility (S.D. ±0.2 mV). The sensor has been used in the potentiometric titration of Cu2+ with EDTA. The utility of the sensor has been tested by determining copper in vegetable foliar and multivitamin capsule successfully.  相似文献   

20.
A sensitive and rapid electrochemical method was developed for the determination of telmisartan based on the enhancement effect of sodium dodecyl benzene sulfonate (SDBS). In 0.1 mol L−1 HClO4 and in the presence of 7.5 × 10−5 mol L−1 SDBS, a well-defined and sensitive oxidation peak was observed for telmisartan at the acetylene black (AB) paste electrode. However, the oxidation peak is poor-shaped and the peak current is very low in the absence of SDBS, suggesting that SDBS shows obvious enhancement effect for the determination of telmisartan. After all the experimental parameters were optimized, a sensitive and simple electrochemical method was developed for determining telmisartan. The oxidation peak current is proportional to the concentration of telmisartan over the range from 2.5 × 10−7 to 2.0 × 10−5 mol L−1. The detection limit is 7.5 × 10−8 mol L−1 after 2 min of accumulation. This new voltammetric method was successfully used to detect telmisartan in drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号