首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
碱金属原子簇的结构和稳定性   总被引:1,自引:0,他引:1       下载免费PDF全文
基于从体心立方碱金属晶体优化确立的多体展开势能函数,本文通过坐标优化研究了碱金属原子簇Xn(X=Li,Na,K,Rb,Cs)的结构和稳定性。发现:(1)Xn原子簇(n=4-21)倾向于形成畸变四面体结构单元,(Td)的密堆积,分子表面被三元环(D3h)所覆盖,其中X7-X15最优化结构中包含五角双锥X7(D5h)结构单元,具有区域五重对称轴;(2)“微观晶体碎片”的分层优化结果表明,体心立方、面心  相似文献   

2.
Structural information of gas phase complexes of poly(ethylene glycol) (PEG) cationized by one or two different alkali metal ions is inferred from MS and MS/MS experiments performed with an electrospray quadrupole ion trap mass spectrometer. The rationale for selecting PEG was that its sites for cation binding are non-selective with respect to the repeating monomeric unit of the polymer, but there is selectivity with respect to the formation of an inner coordination sphere specific to each metal ion. The dissociation of [M1+ M2+ (EO23)], where EO23 = linear polymer of ethylene oxide, 23 units in length, resulted in loss of one of the alkali metal ions, with preference for loss of the larger cation, with no fragmentation of the PEG backbone for Na, K, Rb, and Cs. Li was not examined in this portion of the study. The selectivity for loss of the larger alkali metal ion was [Na+ K+ (EO23)] to [Na+ (EO23)] + K+ at 100%; [K+ Rb+ (EO23)] to [K+ (EO23)] + Rb+ at 93%; and [Rb+ Cs+ (EO23)] to [Rb+ (Eo23)] + Cs+ at 99%. The resolution of [M+ (EOx)] for x = 20-30 was dependent on the alkali metal ion, with the highest resolution observed for Cs+ and the lowest for Na+. These results are discussed with respect to the packing of the oxygen atoms on PEG (M.W.(avg) = 1000) around an alkali metal ion of different radius, and how this packing leads to an ensemble of unique structures, and therefore mobilities for [M+ (EOx)].  相似文献   

3.
Novel artificial ion channels (1 and 2) based on CB[n] (n = 6 and 5, respectively) synthetic receptors with carbonyl-fringed portals (diameter 3.9 and 2.4 A, respectively) can transport proton and alkali metal ions across a lipid membrane with ion selectivity. Fluorometric experiments using large unilamellar vesicles showed that 1 mediates proton transport across the membranes, which can be blocked by a neurotransmitter, acetylcholine, reminiscent of the blocking of the K+ channels by polyamines. The alkali metal ion transport activity of 1 follows the order of Li+ > Cs+ approximately Rb+ > K+ > Na+, which is opposite to the binding affinity of CB[6] toward alkali metal ions. On the other hand, the transport activity of 2 follows the order of Li+ > Na+, which is also opposite to the binding affinity of 2 toward these metal ions, but virtually no transport was observed for K+, Rb+, and Cs+. It is presumably because the carbonyl-fringed portal size of 2 (diameter 2.4 A) is smaller than the diameters of these alkali metal ions. To determine the transport mechanism, voltage-clamp experiments on planar bilayer lipid membranes were carried out. The experiments showed that a single-channel current of 1 for Cs+ transport is approximately 5 pA, which corresponds to an ion flux of approximately 3 x 107 ions/s. These results are consistent with an ion channel mechanism. Not only the structural resemblance to the selectivity filter of K+ channels but also the remarkable ion selectivity makes this model system unique.  相似文献   

4.
Nakamura H  Takagi M  Ueno K 《Talanta》1979,26(10):921-927
An extraction study of alkali metal cations has been made with crown-ether reagents, 4'-picrylaminobenzo-15-crown-5 derivatives (HL). On dissociation in alkaline medium, the orange HL gives the blood-red anion L(-) and extracts alkali metal ions into chloroform as coloured complexes of composition ML.HL or ML. The ease of extraction decreases in the order, K(+) > Rb(+) > Cs(+) > Na(+) > Li(+). The extracted complexes are ML.HL for K(+) and Rb(+), and both ML.HL and ML for Na(+). The Li(+) complex is not extracted. The photometric determination of 10-800 ppm of K(+) is possible in the presence of other alkali and alkaline earth metal ions.  相似文献   

5.
The optical absorption spectra of alkali metals in ethylenediamine have provided evidence for a third oxidation state, -1, of all of the alkali metals heavier than lithium. Experimentally determined NMR parameters have supported this interpretation, further indicating that whereas Na(-) is a genuine metal anion, the interaction of the alkali anion with the medium becomes progressively stronger for the larger metals. Herein, first-principles computations based upon density functional theory are carried out on various species which may be present in solutions composed of alkali metals and ethylenediamine. The energies of a number of hypothetical reactions computed with a continuum solvation model indicate that neither free metal anions, M(-), nor solvated electrons are the most stable species. Instead, [Li(en)(3)](2) and [M(en)(3)(δ+)·M(δ-)] (M = Na, K, Rb, Cs) are predicted to have enhanced stability. The M(en)(3) complexes can be viewed as superalkalis or expanded alkalis, ones in which the valence electron density is pulled out to a greater extent than in the alkali metals alone. The computed optical absorption spectra and NMR parameters of the [Li(en)(3)](2) superalkali dimer and the [M(en)(3)(δ+)·M(δ-)] superalkali-alkali mixed dimers are in good agreement with the aforementioned experimental results, providing further evidence that these may be the dominant species in solution. The latter can also be thought of as an ion pair formed from an alkali metal anion (M(-)) and solvated cation (M(en)(3)(+)).  相似文献   

6.
Alkali Metal Clusters in Zeolite Y. Preparation, Properties, Reactions Alkali metal clusters (Type AB33+) were synthesized by reaction of alkali metal A (Li, Na, K, Rb, Cs) with the cations B (alkali, alkaline earth, and rare earth metals) of zeolite Y. The compounds were characterized by UV/VIS spectroscopy, oxidation by carbon oxides and organic halides, and adsorption of gases and polar molecules. The clusters are less reactive than the free alkali metals, the redox potential depends on the alkali metal as well as the cation of zeolite. Chemical interactions with typical ligands and with N2, Ar, Kr, CO, CO2, Benzene, and n-Hexane were observed. Reaction with ammonia leads to solvated electrons in zeolite's super-cage, stable up to 240 K.  相似文献   

7.
The adsorption of isolated alkali metal atoms (Li, Na, K, Rb, and Cs) on defect-free sur-face of MgO(001) has been systemically investigated with density functional theory using a pseudopotential plane-wave approach. The adsorption energy calculated is about -0.72 eV for the lithium on top of the surface O site and about one third of this value for the other alkali metals. The relatively strong interaction of Li with the surface O can be explained by a more covalent bonding involved, evidenced by results of both the projected density of states and the charge density difference. The bonding mechanism is discussed in detail for all alkali metals.  相似文献   

8.
The applicability of pair potential functions to liquid alkali metals is questionable. On the one hand, some recent reports in the literature suggest the validity of two-parameter pair-wise additive Lennard-Jones (LJ) potentials for liquid alkali metals. On the other hand, there are some reports suggesting the inaccuracy of pair potential functions for liquid metals. In this work, we have performed extensive molecular dynamics simulations of vapor-liquid phase equilibria in potassium to check the validity of the proposed LJ potentials and to improve their accuracy by changing the LJ exponents and taking into account the temperaturedependencies of the potential parameters. We have calculated the orthobaric liquid and vapor densities of potassium using LJ (12–6), LJ (8.5–4) and LJ (5–4), effective pair potential energy functions. The results show that using an LJ (8.5–4) potential energy function with temperature-independent parameters, ε and σ, is inadequate to account for the vapor-liquid coexistence properties of potassium. Taking into account the temperature-dependencies of the LJ parameters, ε(T) and σ(T), we obtained the densities of coexisting liquid and vapor potassium in a much better agreement with experimental data. Changing the magnitude of repulsive and attractive contributions to the potential energy function shows that a two-parameter LJ (5–4) potential can well reproduce the densities of liquid and vapor potassium. The results show that LJ (5–4) potential with temperature-dependent parameters produces the densities of liquid and vapor potassium more accurately, compared to the results obtained using LJ (12–6) and LJ (8.5–4) potential energy functions.  相似文献   

9.
Hassan SS  Mahmoud WH  Othman AH 《Talanta》1997,44(6):1087-1094
A novel potentiometric membrane sensor for potassium ion based on the use of rifamycin as a neutral ionophore is described. The sensing membrane is formulated with 2 wt.% rifamycin-SV, 69 wt.% dibutylsebacate plasticizer and 29 wt.% PVC. Linear and stable potential response with near-Nernstian slope of 56.7 +/- 0.2 mV decade(-1) are obtained over the concentration range 1 x 10(-1)-3 x 10(-5) M K(+). The detection limit is 0.3 microg ml(-1) K(+), the response time is 10-30 s and the working pH range is 4-11. Responses of the sensor toward alkali and alkaline earth metal ions are in the order K(+) > Rb(+) > Cs(+) > Na(+) > NH(4)(+) > Ba(2+) > Mg(2+) > Ca(2+) > Sr(2+) > Li(+). The selectivity coefficient data reveal negligible interference from transition metal ions. Direct potentiometric determination of K(+) in the presence of 10-50-fold excess of alkali and alkaline earth metals gives results with an average recovery of 99.1%, and a mean standard deviation of 1.2%. The data agree fairly well with those obtained by flame photometry.  相似文献   

10.
Luminol salts of five alkali metals, Li, Na, K, Rb, and Cs, have been prepared and structurally characterized by single-crystal X-ray diffraction. Luminol is deprotonated at the same site whereas each ionic salt has a unique composition and a different number of water molecules. The cation/luminol ion pair to water molecule ratio in the lattices varies as follows: 1 : 0 for K, 1 : 1 for Li, 1 : 2 for Rb, 1 : 3 for Cs, and 1 : 6 for Na. The differences in composition among the five compounds lead to different metal coordination environments in the solid state and distinct 3-D molecular arrangements in the lattice.  相似文献   

11.
We investigate the possible existence of crystalline alkali metal orthocarbonates, A(4)CO(4), where A=Li, Na, K, Rb, and Cs. We study the equilibrium between the possible modifications of the orthocarbonate A(4)CO(4) and the binary mixture of the possible modifications of the alkali oxide A(2)O and those of the alkali metal carbonate A(2)CO(3) as function of pressure. In all cases, the orthocarbonate should be stable at sufficiently high pressure ranging from 22-32 GPa (Rb(4)CO(4)) to 200-220 GPa (Cs(4)CO(4)).  相似文献   

12.
The thermal properties of the anthranilates of the alkali metals Li, Na, K, Rb and Cs were studied. Thermal, chemical and X-ray analyses and infrared spectroscopy were used to determine the reactions of decomposition of these compounds. The thermal properties of the anthranilates of the alkali metals were compared with those of other metals.This work was done within Project 01.17: New Methods in Analytical Chemistry and Their Application in the National Economy.  相似文献   

13.
Extraction of alkali metal picrates with N,N'-dibenzyl-18-crown-6 was carried out, with dichloromethane as water-immiscible solvent, as a function [ligand]/[metal cation]. The extractability of metal picrates (Li(+), Na(+), K(+), Rb(+), Cs(+)) was evaluated as a function of [L]/[M(+)]. The extractability of complex cation-picrate ion pairs decreases in this sequence: Li(+)>Rb(+)>Cs(+)>K(+)>Na(+). The overall extraction equilibrium constants (K(ex)) for complexes of N,N'-dibenzyl-18-crown-6 with alkali metal picrates between dichloromethane and water have been determined at 25 degrees C. The values of the extraction constants (logK(ex)) were determined to be 10.05, 6.83, 7.12, 7.83, 6.73 for Li(+), Na(+), K(+), Rb(+) and Cs(+) compounds, respectively. DB186 shows almost 2-fold extractability against Li(+) compared to the other metal picrates, whereas it shows no obvious extractability difference amongst the other metal cations when [L]/[M(+)] is 0.2-1. However, an increasing extractability is observed for Cs(+) when [L]/[M(+)] [1].  相似文献   

14.
Threshold collision-induced dissociation techniques are employed to determine the bond dissociation energies (BDEs) of complexes of alkali metal cations, Na+, K+, Rb+, and Cs+, to triethyl phosphate (TEP). The primary and lowest energy dissociation pathway in all cases is the endothermic loss of the neutral TEP ligand. Theoretical electronic structure calculations at the B3LYP/6-311+G(2d,2p)//B3LYP/6-31G* level of theory are used to determine the structures, molecular parameters, and theoretical estimates for the BDEs of these complexes. For the complexes to Rb+ and Cs+, theoretical calculations were performed using hybrid basis sets in which the effective core potentials and valence basis sets of Hay and Wadt were used to describe the alkali metal cation, while the standard basis sets were used for all other atoms. The agreement between theory and experiment is excellent for the complexes to Na+ and K+ and is somewhat less satisfactory for the complexes to the heavier alkali metal cations, Rb+ and Cs+, where effective core potentials were used to describe the cation. The trends in the binding energies are examined. The binding of alkali metal cations to triethyl phosphate is compared with that to trimethylphosphate.  相似文献   

15.
The coordination reaction of Na+, K+, Rb+ and Cs+ with benzo- 15-crown-5, 18-crown-6 and the newly synthesized cyclic polyethers 2, 3-benzo-8, 15-dimethyl-18-crown-6, 2, 3-benzo-8, 11, 15-trimethyl-18-crown-6 in methanol at 25`C has been studied by conductometric titration. The stability constants for the 1:1 coordination compounds were calculated. The marked selectivity of 18-crown-6 toward alkali metal ions was not found in its methyl derivatives. The induction effect of the benzene ring and methyl group on polyether ring reduced the stability of the coordination compounds. In methanol, the stability sequence of te compounds of alkali metal ions with 18-crown-6 was K+>Rb+>Cs+>Na+, that of its dimethyl derivative was K+>Rb+>Na+>Cs+ and that of its trimethyl derivative was K+>Na+>Rb+>Cs+, that is, the methyl substituent had a weaker influence on the stability of Na+ compound than on that of Rb+ or Cs+ compound. In the range of concentration studied, decrease in equivalent conductance is in agreement with the prediction on the basis of the structure of the complexes. The above results may give a clue for modifying the structure of a crown ether for specified selectivity.  相似文献   

16.
Russian Journal of Physical Chemistry A - The pair interaction potentials of the weakly bound Rb–CH4 and Cs–CH4 systems, which are active media of alkali metal vapor lasers with...  相似文献   

17.
The gas phase structures of cationized histidine (His), including complexes with Li(+), Na(+), K(+), Rb(+), and Cs(+), are examined by infrared multiple photon dissociation (IRMPD) action spectroscopy utilizing light generated by a free electron laser, in conjunction with quantum chemical calculations. To identify the structures present in the experimental studies, measured IRMPD spectra are compared to spectra calculated at B3LYP/6-311+G(d,p) (Li(+), Na(+), and K(+) complexes) and B3LYP/HW*/6-311+G(d,p) (Rb(+) and Cs(+) complexes) levels of theory, where HW* indicates that the Hay-Wadt effective core potential with additional polarization functions was used on the metals. Single point energy calculations were carried out at the B3LYP, B3P86, and MP2(full) levels using the 6-311+G(2d,2p) basis set. On the basis of these experiments and calculations, the only conformation that reproduces the IRMPD action spectra for the complexes of the smaller alkali metal cations, Li(+)(His) and Na(+)(His), is a charge-solvated, tridentate structure where the metal cation binds to the backbone carbonyl oxygen, backbone amino nitrogen, and nitrogen atom of the imidazole side chain, [CO,N(α),N(1)], in agreement with the predicted ground states of these complexes. Spectra of the larger alkali metal cation complexes, K(+)(His), Rb(+)(His), and Cs(+)(His), have very similar spectral features that are considerably more complex than the IRMPD spectra of Li(+)(His) and Na(+)(His). For these complexes, the bidentate [CO,N(1)] conformer in which the metal cation binds to the backbone carbonyl oxygen and nitrogen atom of the imidazole side chain is a dominant contributor, although features associated with the tridentate [CO,N(α),N(1)] conformer remain, and those for the [COOH] conformer are also clearly present. Theoretical results for Rb(+)(His) and Cs(+)(His) indicate that both [CO,N(1)] and [COOH] conformers are low-energy structures, with different levels of theory predicting different ground conformers.  相似文献   

18.
The cesium salt of the icosahedral borane anion dodecahydroxy-closo-dodecaborate(2-), Cs(2)[closo-B(12)(OH)(12)], Cs(2)1, was prepared by heating cesium dodecahydro-closo-dodecaborate(2-), Cs(2)[closo-B(12)H(12)], Cs(2)2, with 30% hydrogen peroxide. The other alkali metal salts A(2)1 (A = Li, Na, K, Rb) precipitated upon addition of ACl to warm aqueous solutions of Cs(2)1. The ammonium salt, [NH(4)](2)1, and the (mu-nitrido)bis(triphenylphosphonium) salt, [PPN](2)1, were obtained similarly. The [H(3)O](2)1 salt precipitated upon acidification of aqueous solutions of Cs(2)1 with hydrochloric acid. The solubility of these salts in water was determined by measuring the boron content of saturated aqueous solutions of A(2)1 (A = Li, Na, K, Rb, Cs), [H(3)O](2)1, and [NH(4)](2)1 using ICP-AES. Although these salts are derived from a dianion with twelve pendant hydroxyl groups, the alkali metal salts surprisingly displayed low water solubilities. Water solubility decreases with a decrease in the radius of A(+), except for the lithium salt, which is slightly more soluble than the potassium salt. The [H(3)O](2)1 and the [NH(4)](2)1 salts provide rare examples of water-insoluble hydronium and ammonium salts. The low water solubility of the A(2)1 salts is attributed to the dianion's pendant hydroxyl groups, which appear to function as cross-linking ligands. Four alkali metal salts, A(2)1 (A = Na, K, Rb, Cs), were characterized in the solid state by single-crystal X-ray crystallography. These data revealed intricate networks in which several anions are complexed through their hydroxyl groups to each alkali metal cation. In addition, the anions are engaged in hydrogen bonding with each other and, if present, with water of hydration. This cross-linking results in the precipitation of aggregated salts. Cation coordination numbers decrease with cation radius. Thus, cesium and rubidium are ten-coordinate, whereas potassium is seven-coordinate and sodium is six-coordinate. The geometry of anion 1(2)(-) is independent of cation identity; the B-B and B-O bond lengths of the various A(2)1 salts (A = Na, K, Rb, Cs) are identical.  相似文献   

19.
Transport properties for OH-He are computed through quantum scattering calculations using the ab initio potential energy surfaces determined by Lee et al. [J. Chem. Phys. 113, 5736 (2000)]. To gauge the importance of the open-shell character of OH and the anisotropy of the potential on the transport properties, including the collision integrals Ω((1,1)) and Ω((2,2)), as well as the diffusion coefficient, calculations were performed with the full potential, with the difference potential V(dif) set to zero, and with only the spherical average of the potential. Slight differences (3%-5%) in the computed diffusion coefficient were found between the values obtained using the full potential and the truncated potentials. The computed diffusion coefficients were compared to recent experimental measurements and those computed with a Lennard-Jones (LJ) 12-6 potential. The values obtained with the full potential were slightly higher than the experimental values. The LJ 12-6 potential was found to underestimate the variation in temperature as compared to that obtained using the full OH-He ab initio potential.  相似文献   

20.
Complexes of the anion of the secondary amine 2-phenylaminopyridine (LH) with the heavier alkali metals Na-Cs have been prepared in the presence of various macrocyclic polyether crowns [12-crown-4 (12C4), 15-crown-5 (15C5), and 18-crown-6 (18C6)], which coordinate to the metal ions in all cases. Depending on the combination of alkali metal and crown, the products include separated ion pairs [(crown)(2)M](+)L(-)(12C4/Na, 15C5/K, 15C5/Rb, 15C5/Cs) and contact-ion-pair neutral molecules [(crown)ML](15C5/Na, 18C6/Na, 18C6/K, 18C6/Rb) in which L(-) acts as a bidentate ligand. [((12C4)KL)(2)] is a dimer in which the amido and pyridine N atoms of two ligands bridge the metal ions, while [((18C6)KL(2)K)([infinity])] is a chain polymer with crown O and pyridyl N atoms acting as bridges in corner-sharing KOKN four-membered rings and may be regarded as a potassium potassate complex. [((18C6)Cs(2)L(2))([infinity])] is also polymeric, with a basic arrangement like that of [((12C4)KL)(2)], but with each 18C6 ligand mu-kappa6:kappa6 to two metal centres, generating the polymer. Although most of the [(crown)(2)M](+) sandwich cations have essentially parallel crown ligands, [(12C4)(2)Rb](+) is markedly bent, both in the complex incorporating THF as an additional ligand and in the THF-free complex, where two of these cations form a centrosymmetric dimer through two bridging oxygen atoms; DFT calculations indicate that the bending is inherent, thus enabling the coordination by an extra oxygen atom rather than being a consequence of this coordination. Attempts to isolate the caesium 12C4 derivative were unsuccessful. The compounds have been characterized by NMR spectroscopy, CHN microanalysis and, in most cases, X-ray crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号