首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Jagadeesh  G.  Hashimoto  T.  Naitou  K.  Sun  M.  Takayama  K. 《显形杂志》2003,6(2):195-203
The presence of an adverse pressure gradient, shock/shock interaction and shock wave/boundary layer interaction often induces flow separation around bodies. However, the effect of dissociated flow on separated flow characteristics, especially at hypersonic speeds, is still not clear, and considerable differences are observed between experiments and numerical simulations. In this investigation, the unsteady separated flow features around double cones are visualized in the Shock Wave Research Center (SWRC) free-piston driven shock tunnel at a nominal Mach Number of 6.99 using multiple optical techniques. The time resolved shock structure oscillations in the flow field around double cones (first cone, semi-apex angle = 25°; second cone, semi-apex angles=50°, 65°, 68° and 70°) have been visualized using a high-speed image converter camera (IMACON) at a nominal stagnation enthalpy of 4.8 MJ/kg. In addition, flow visualization studies around the double cone is also carried out using Schlieren and double exposure holographic interferometry in order to precisely locate the separation point and measure the separation length. The presence of a triple shock structure in front of the second cone and a non-linear unsteady shock structure oscillation in the flow field are the significant results from visualization studies on the 25° /65°, 25° /68° and 25°/70° double cones. On the other hand, the flow field around 25° /50° is relatively steady and Type V shock/shock interaction is observed. Illustrative numerical simulation studies are carried out by solving N-S equations to complement the experiments. The simulated flow features around a double cone agree well qualitatively with experiments.  相似文献   

2.
The purpose of this study is to understand the aerodynamic noise source distribution around a rotating fan blade by measuring the noise signal and velocity field around the blade. The local noise-level distribution over the fan blade is measured by microphone arrays, and the flow field is visualized by smoke and phase-averaged PIV measurement. The noise source distribution is examined by cross-correlation analysis between noise signal and velocity fluctuation. It is found that the noise source is located near the rotating fan blade, especially around leading and trailing edges. The separation and reattachment of flow are observed near the leading edge, and the tip vortices and vortex shedding are found near the trailing edge. The cross-correlation distribution of the noise signal and the radial velocity fluctuation shows large magnitude in the correlated regions, which indicates the noise generation by the formation of vortex structure around the blade.  相似文献   

3.
4.
This paper investigates the benefit of unsteady blowing actuation over a two-dimensional (2D) airfoil specially designed for wind turbine applications. The experiments were carried out in Syracuse University’s anechoic wind tunnel, both with and without large-scale unsteadiness in the free stream generated by a 2D cylinder upstream of the airfoil. By analyzing both surface pressure through wavelet analysis and Particle Image Velocimetry (PIV) velocity field measurements, we found a drastic change in the flow physics and the aerodynamic loading on the airfoil between steady and unsteady free-stream conditions. When there was no large-scale unsteadiness introduced in the flow, under open-loop flow control conditions with unsteady blowing, the leading-edge separation was delayed and the maximum lift coefficient was increased. For the cases where large-scale unsteadiness was introduced into the flow, the experiments showed that both open-loop and closed-loop control cases were capable of reducing load fluctuations by a measurable amount. However, only the closed-loop control case that utilized dynamic surface pressure information from the airfoil suction side near the leading edge was capable of consistently mitigating the fluctuating load.  相似文献   

5.
6.
7.
The purpose of this paper is to study the physics of aerodynamic noise generation from the symmetrical airfoil of NACA 0018 in a uniform flow. The relationship between the noise spectrum and the unsteady flow field around the airfoil is studied in an acoustic wind tunnel using flow visualization and PIV analysis. The discrete frequency noise was generated from the airfoil inclined at small angle of attack to the free stream. The flow visualization result indicates the presence of attached boundary layer over the suction side and the separated shear layer over the rear pressure side of the airfoil, when the discrete frequency noise is observed. It is found from the PIV analysis that a large magnitude of vorticity is generated periodically from the pressure side of the trailing edge and it develops into an asymmetrical vortex street in the wake of the airfoil. The periodicity of the shedding vortices was found to agree with that of the frequency of the generated noise.  相似文献   

8.
The shear layer evolution and turbulent structure of near-wake behind a sphere atRe= 11,000 and 5,300 were investigated using a smoke-wire visualization method. A laminar flow separation was found to occur near the equator. The smooth laminar shear layers appeared to be axisymmetrically stable to the downstream location of aboutx/d=1.0 atRe=11,000 andx/d= 1.7∼1.8 atRe=5,300, respectively. At Re=11,000, the vortex ring-shaped protrusions were observed with the onset of shear layer instability. Moreover, the transition from laminar to turbulence in the separated flow region occurred earlier at the hiher Reynolds number ofRe=11,000 than atRe=5,300. The PIV measurements in the streamwise and cross-sectional planes atRe=11,000 clearly revealed the turbulent structures of the sphere wake such as recirculating flow, shear layer instability, vortex roll-up, and small-scale turbulent eddies.  相似文献   

9.
10.
The effect of the type of mathematical model on the results of numerical simulations of combustion in a flat model combustion chamber with a supersonic flow is considered. The process of formation of a flow with combustion in a chamber includes the propagation of the combustion wave along the chamber and the emergence of a pseudoshock structure. The results of nonstationary calculations by the explicit scheme using (1) the no-slip boundary condition at the chamber walls and the local time stepping procedure, (2) law-of-the-wall and the local time stepping procedure, and (3) law-of-the-wall and the fractional time stepping procedure are compared. Arguments in favor of the applicability of the latter approach to solving this class of problems are presented. The physical results obtained are analyzed.  相似文献   

11.
Because of the European and global regulation concerning acoustic emission, the goal of manufacturers is to substantially decrease the noise radiated by turbomachines, and in particular axial fans, without degrading their aerodynamic performances. High rotation speed and increasing power add to the overall difficulties. The theoretical study of this paper consists of two parts: (1) an aerodynamic approach based on the vortex surface method and (2) an aeroacoustic approach which mainly concerns the prediction of the tonal noise using the Ffowcs Williams and Hawkings (FW-H) equation. One of the main goals is the evaluation of the unsteady aerodynamic forces applied on the fan blades. A 2D software analysis, based on the vortex surface method (or potential flow method), was carried out. That process enabled evaluation of the potential flow around a mobile grid; first in a steady mode, and secondly in an unsteady mode by introducing an upstream disturbance in the form of an inlet velocity variation. The sources of noise corresponding to the zones with high force fluctuation amplitude are located initially on the blade surface. These fluctuating forces are used to predict the tonal noise radiated by the fan in far field by means of the FW-H equation. Two axial flow fans were used in this study. The theoretical results will be compared to the experimental ones in order to evaluate the aeroacoustic performances of the fans.  相似文献   

12.
Although the phenomena related to the multiphase flow can be found in many kinds of industrial and engineering applications, the physical mechanism of the multiphase flow has not been investigated in detail. The major reason for the lack of data in the multiphase flow lies in the difficulties in measuring the flow quantities of the multiple phases simultaneously. Presently, the visualization and the PIV measurement have been carried out about the both phases of the liquid-liquid two-phase flow. The difference in the refractive indices makes the visualization in the vicinity of the boundary of the multiple phases very difficult. In this study, the refractive index of the aqueous phase has been equalized to that of the oil phase by adjusting the concentration of the aqueous solution. As for the surrounding fluid, silicon oil is chosen and as for the droplet, the aqueous solution of glycerol is prepared whose refractive index matches that of silicon oil. Both phases are seeded with neutrally buoyant particles. The droplet is slightly colored with Rhodamine B so that the position of the invisible droplet can be identified. The difference in the background brightness in both phases helps PIV algorithm in distinguishing the motions in each phases. The results show the details of the flow structures both around and inside of a falling droplet simultaneously.  相似文献   

13.
Accurate measurement of gas turbine blades’ temperature is one of the greatest challenges encountered in gas turbine temperature measurements. Within an enclosed gas turbine environment with surfaces of varying temperature and low emissivities, a new challenge is introduced into the use of radiation thermometers due to the problem of reflection error. A method for correcting this error has been proposed and demonstrated in this work through computer simulation and experiment. The method assumed that emissivities of all surfaces exchanging thermal radiation are known. Simulations were carried out considering targets with low and high emissivities of 0.3 and 0.8 respectively while experimental measurements were carried out on blades with emissivity of 0.76. Simulated results showed possibility of achieving error less than 1% while experimental result corrected the error to 1.1%. It was thus concluded that the method is appropriate for correcting reflection error commonly encountered in temperature measurement of gas turbine blades.  相似文献   

14.
Mössbauer investigations were carried out on low carbon steels containing 12–13.5% Cr and 3–5% Ni in order to get information about the reason of cracking and fracture which take place during the use of turbine blade wheels. The quantity of retained austenite determined from the Mössbauer spectra of steels was low (<1%) in the cracked and fractured basic materials. Comparing this value with those being considerable in quenched (≈11%) as well as in annealed state (≈5%) of the same sample, we can conclude that the transformation of the austenite taking place during the working of turbine blade wheel can be associated with the cracking and the fracture. We found an anomalous increase of the quantity of the austenite in steel samples (quenched from different temperature between 700 and 1000 °C and aged at 450–600 °C) aged again at 450–550 °C. On the basis of the evaluation of Mössbauer spectra of the steels, information can be obtained about the changes in the concentration of alloying elements being in martensite at the various heat treatments.  相似文献   

15.
A numerical study of the boundary layer flow past unsteady stretching surface in nanofluid under the effects of suction and viscous dissipation is investigated. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. A similarity solution is presented, which depends on the unsteadiness parameter A, Eckert number Ec, ζ suction or injection parameter, Prandtl number Pr, Lewis number Le, Brownian motion number Nb, and thermophoresis number Nt. The governing partial differential equations were converted to nonlinear ordinary differential equations by using a suitable similarity transformation, which are solved numerically using the Nactsheim-Swigert shooting technique together with Runge-Kutta six-order iteration scheme. The accuracy of the numerical method is tested by performing various comparisons with the previously published work, and the results are found to be in excellent agreement. Numerical results are presented both in tabular and graphical forms illustrating the effects of these parameters on thermal and nanoparticle volume fraction boundary layers. The thermal boundary layer thickens with a rise in the local temperature as the Brownianmotion, thermophoresis, and convective heating each intensify.  相似文献   

16.
The spatial flowfield around a model of the re-entry capsule of the Mars Environmental Survey (MESUR) Pathfinder probe afterbody configuration traveling at a speed of Mach 10 was investigated utilizing the electrical discharge method. The shock shape ahead of the capsule was observed using a technique for visualizing 3-D shock shapes, then the streamline following the shock wave was observed utilizing a technique for visualizing streamlines crossing a shock wave. Subsequently, the flowfield behind the capsule was observed by applying a technique for visualizing flow patterns. From these observations, the spatial flow construction including the wake region such as a separation, free shear layer, and rear stagnation location behind the capsule was made clear. These experiments utilizing the electrical discharge method qualitatively demonstrated the spatial flow structure before and behind the hypersonic re-entry capsule, which had been very difficult to visualize. These experiments were carried out by using a pulsed facility of 18 ms duration.  相似文献   

17.
One of the basic methods to improve both the thermal efficiency and power output of a gas turbine is to increase the firing temperature. However, gas turbine blades are easily damaged in harsh high-temperature and high-pressure environments. Therefore, ensuring that the blade temperature remains within the design limits is very important. There are unsolved problems in blade temperature measurement, relating to the emissivity of the blade surface, influences of the combustion gases, and reflections of radiant energy from the surroundings. In this study, the emissivity of blade surfaces has been measured, with errors reduced by a fitting method, influences of the combustion gases have been calculated for different operational conditions, and a reflection model has been built. An iterative computing method is proposed for calculating blade temperatures, and the experimental results show that this method has high precision.  相似文献   

18.
A new method for shape optimization for unsteady viscous flows is presented. It is based on the continuous adjoint approach using a time accurate method and is capable of handling both inverse and direct objective functions. The objective function is minimized or maximized subject to the satisfaction of flow equations. The shape of the body is parametrized via a Non-Uniform Rational B-Splines (NURBS) curve and is updated by using the gradients obtained from solving the flow and adjoint equations. A finite element method based on streamline-upwind Petrov/Galerkin (SUPG) and pressure stabilized Petrov/Galerkin (PSPG) stabilization techniques is used to solve both the flow and adjoint equations. The method has been implemented and tested for the design of airfoils, based on enhancing its time-averaged aerodynamic coefficients. Interesting shapes are obtained, especially when the objective is to produce high performance airfoils. The effect of the extent of the window of time integration of flow and adjoint equations on the design process is studied. It is found that when the window of time integration is insufficient, the gradients are most likely to be erroneous.  相似文献   

19.
A recent extension of the recurrence-rate correlation technique of Erdmann and Gellert has been used to measure fluctuating cellular flows between concentric cylinders with the inner cylinder rotating. The length of the fluid-filled annulus was smaller than in most previous experiments of this kind. Direct velocity correlation measurements have revealed unexpected features in the development of these flows with increasing Reynolds number. The transition process was found to retain temporal order to a greater extent than indicated by many previous observations.  相似文献   

20.
The present study investigates a Casson fluid flow in the presence of free convection of combined heat and mass transfer toward an unsteady permeable stretching sheet with thermal radiation, viscous dissipation and chemical reaction. The governing partial differential equations are reduced to a system of nonlinear ordinary differential equations and then solved by an efficient Runge–Kutta–Fehlberg method. The dimensionless velocity is decreased by increasing values of the chemical reaction and magnetic parameter while fluid temperature is significantly reduced by increasing values of the Prandtl number. The heat transfer rate is reduced with increasing values of thermal radiation and magnetic parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号