首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Potentials curves for the ground and excited states of the chlorine molecules and its positive and negative ions have been calculated by means of the MRD-CI method. The standard AO basis employed consists of 74 functions including two atomic d and one set of s and p bond species, and the results at the corresponding full CI level are estimated for each state via a perturbation correction. Special emphasis is placed upon the treatment of Rydberg-valence mixing in this system, which phenomenon is found to be essential to the understanding of Cl2 electronic absorption spectrum. All singlet states which correlate with the lowest dissociation limit plus many others which go to ionic Cl++Cl? or Rydberg Cl+Cl asymptotes are given explicit consideration. Among the triplet species of Cl2 which dissociate into the ground state atoms only the 3Πu state is not repulsive. The calculated D0 value for the ground state is 2.455 eV compared to the experimental value of 2.475 eV, while the vertical ionization energy and electron affinity are found to be 11.48 and 2.38 eV respectively, also in very good agreement with the corresponding measured data of 11.50 and 2.51 ± 0.1 eV. In addition to Cl2 laser line is confirmed to result from a 3Πg3Πu emission, whereby the calculated downward vertical transition energy of 4.86 eV fits in quite well with the known location of this line at 4.805 eV. The first two dipole-allowed transitions from the ground state of chlorine involve 1Σu+ and 1Πu states which are calculated to be nearly isoenergetic, and these results also match very well with the location of the first absorption band in this spectrum. Finally quite similarly as in O2 it is found that an avoided crossing between Rydberg and valences states produces a relatively steep potential well for an upper state (2 1Σu+), whose location concides with that of a second absorption band recently observed in synchrotron radiation studies.  相似文献   

2.
The geometries of 1H-7-azaindole and the 1H-7-azaindole(H(2)O)(1-2) complexes and the respective 7H tautomers in their ground and two lowest electronically excited pi-pi(*) singlet states have been optimized by using the second-order approximated coupled cluster model within the resolution-of-the-identity approximation. Based on these optimized structures, adiabatic excitation spectra were computed by using the combined density functional theory/multireference configuration interaction method. Special attention was paid to comparison of the orientation of transition dipole moments and excited state permanent dipole moments, which can be determined accurately with rotationally resolved electronic Stark spectroscopy. The electronic nature of the lowest excited state is shown to change from L(b) to L(a) upon water complexation.  相似文献   

3.
The lowest electronically excited singlet states of tryptamine and the tryptamine (H2O)1 cluster have been studied, using time dependent density functional theory for determination of the geometries and multireference configuration interaction for the vertical and adiabatic excitation energies, the permanent dipole moments, and the transition dipole moment orientations. All molecular properties of the seven experimentally observed conformers of tryptamine could be reproduced with high accuracy. A strong solvent reorientation has been found upon electronic excitation of the 1:1 water cluster of tryptamine to the L(a) and L(b) states. The adiabatically lowest excited singlet state in case of the tryptamine monomer is the L(b) state, while for the 1:1 water complex, the L(a) is calculated below the L(b) state.  相似文献   

4.
The photodissociation of dianthracene and related compounds leads to appreciable fractions of excited state excimer or exciplex products, dependent on temperature and solvent viscosity. The experimental evidence strongly suggests the involvement of an intermediate with an electronic structure which correlates with that of the benzyl radical.  相似文献   

5.
6.
The anionic copolymerization of styrene with nonpolar monomers (butadiene and isoprene) is studied theoretically and experimentally. The known problem of activity transformation, when the monomer more active in homopolymerization becomes less active in copolymerization, is considered. This problem has not previously been solved by traditional theory methods. The structure of complexes of living polymers with monomer molecules and the reaction activation energy are ab initio calculated. The activity of the monomer is shown to be determined by the energy of the electronically excited state of the reactive complex between the monomer molecules and the growing active center.  相似文献   

7.
Electronic properties of water clusters (H2O)(n), with n=2, 4, 8, 10, 15, 20, and 30 molecules were investigated by sequential Monte Carlo/density-functional theory (DFT) calculations. DFT calculations were carried out over uncorrelated configurations generated by Monte Carlo simulations of liquid water with a reparametrized exchange-correlation functional that reproduces the experimental information on the electronic properties (first ionization energy and highest occupied molecular orbital-lowest unoccupied molecular orbital gap) of the water dimer. The dependence of electronic properties on the cluster size (n) shows that the density of states (DOS) of small water clusters (n>10) exhibits the same basic features that are typical of larger aggregates, such as the mixing of the 3a1 and 1b1 valence bands. When long-ranged polarization effects are taken into account by the introduction of embedding charges, the DOS associated with 3a1 orbitals is significantly enhanced. In agreement with valence-band photoelectron spectra of liquid water, the 1b1, 3a1, and 1b2 electron binding energies in water aggregates are redshifted by approximately 1 eV relative to the isolated molecule. By extrapolating the results for larger clusters the threshold energy for photoelectron emission is 9.6+/-0.15 eV (free clusters) and 10.58+/-0.10 eV (embedded clusters). Our results for the electron affinity (V0=-0.17+/-0.05 eV) and adiabatic band gap (E(G,Ad)=6.83+/-0.05 eV) of liquid water are in excellent agreement with recent information from theoretical and experimental works.  相似文献   

8.
The role played by electronically excited oxygen in exoemission and heterogeneous catalysis is considered. The results obtained in a study of thermally stimulated exoemission from the surface of Al2O3 and SiO2 are compared with data of temperature-programmed desorption of singlet oxygen O2(1Δg) from the surface of Al2O3 and HZSM-5 zeolites with different SiO2/Al2O3 ratios. The role played by electronically excited oxygen states in heterogeneous catalysis is discussed on the basis of our own and literature data. Thermally stimulated exoemission after the action of an electron flow is considered taking into account electron-stimulated desorption and the available data on electron bombardment in catalysis.  相似文献   

9.
Previous work on the determination of the photoionization threshold (Isol) of tryptophan has now been extended to indole as a solute, both in tetramethylsilane (TMSi) and H2O solvents. In TMSi, electron scavenging by N2O or photoconductivity measurements lead to the same Isol value: 4.95 ± 0.1 eV. In water, Isol is found equal to 4.35 ± 0.1 eV. From these experiments, information on the ionization mechanism, on the oxidized solute and on the solvent can be gained: (i) the scavenger electron affinity does not intervene in the energy balance providing Isol; (ii) an “effective” ionic radius of indole (1.40 Å) is estimated which suggests that the positive charge remains highly localized on the N-atom of the indole ring; (iii) a value of ?1.2 ± 0.1 eV can be deduced for Vo, the conduction band edge of water; (iiii) from the above findings, the energy gap EG of pure water, considered as a semi-conductor, would be close to 7 eV. Such a result is discussed in terms of literature data pertaining to electron ejection in pure liquid water and X-ray photoelectron spectroscopy of amorphous ice.  相似文献   

10.
11.
A model of nonequilibrium charge recombination from an excited adiabatic state of a donor-acceptor complex induced by the nonadiabatic interaction operator is considered. The decay of the excited state population prepared by a short laser pulse is shown to be highly nonexponential. The influence of the excitation pulse carrier frequency on the ultrafast charge recombination dynamics of excited donor-acceptor complexes is explored. The charge recombination rate constant is found to decrease with increasing excitation frequency. The variation of the excitation pulse carrier frequency within the charge transfer absorption band of the complex can alter the effective charge recombination rate by up to a factor 2. The magnitude of this spectral effect decreases strongly with increasing electronic coupling.  相似文献   

12.
Following our work on the study of helium droplets and film doped with one electronically excited rubidium atom Rb(?) ((2)P) [M. Leino, A. Viel, and R. E. Zillich, J. Chem. Phys. 129, 184308 (2008)], we focus in this paper on the second excited state. We present theoretical studies of such droplets and films using quantum Monte Carlo approaches. Diffusion and path integral Monte Carlo algorithms combined with a diatomics-in-molecule scheme to model the nonpair additive potential energy surface are used to investigate the energetics and the structure of Rb(?)He(n) clusters. Helium films as a model for the limit of large clusters are also considered. As in our work on the first electronic excited state, our present calculations find stable Rb(?)He(n) clusters. The structures obtained are however different with a He-Rb(?)-He exciplex core to which more helium atoms are weakly attached, preferentially on one end of the core exciplex. The electronic absorption spectrum is also presented for increasing cluster sizes as well as for the film.  相似文献   

13.
This project aims to attack the frontiers of electronic structure calculations on the excited states of large molecules and molecular aggregates by developing novel theoretical and computational methods. The methodology development is especially based on the time-dependent density functional theory (TDDFT) and valence bond (VB) theory, and is expected to be computationally effective and accurate as well. Research works on the following related subjects will be performed: (1) The analytical energy-derivative approaches for electronically excited state within TDDFT will be developed to reduce bypass the computational costs in the calculation of molecular excited-state properties. (2) The ab initio methods for electronically excited state based on VB theory and hybrid TDDFT-VB method will be developed to overcome the limitations of current TDDFT in simulating photophysics and photochemistry. (3) For larger aggregates, neither ab initio methods nor TDDFT is applicable. We intend to build the effective model Hamiltonian by developing novel theoretical and computational methods to calculate the involved microscopic physical parameters from the first-principles methods. The constructed effective Hamiltonian is then used to describe the excitonic states and excitonic dynamics of the natural or artificial photosynthesized systems, organic or inorganic photovoltaic cell. (4) The condensed phase environment is taken into account by combining the developed theories and algorithms based on TDDFT and VB with the polarizable continuum solvent models (PCM), molecular mechanism (MM), classical electrodynamics (ED) or molecular dynamics (MD) theory. (5) Highly efficient software packages will be designed and developed.  相似文献   

14.
The exchange narrowing of the J band of certain dye monomers upon aggregation in solution has been known since the 1930s. Here, we analyze the theoretical explanations put forward to account for these narrow absorption bands. Although the theories range from models of identical monomers interacting with vibrations to the opposite of rigid monomers with statistically distributed electronic site energies, all approaches exhibit exchange narrowing. However, we show that the origins of the narrowing are different. A unified theory incorporating the two approaches is presented in which features of both narrowing mechanisms are evident.  相似文献   

15.
16.
Exciton absorption spectrum of optically excited linear molecular aggregate is theoretically investigated. The sum rules for the integral intensity of the absorption spectrum are derived. The dipole moments of the optical transitions from the one-exciton states to the two-exciton states are presented. The results obtained indicate an energy increase of the exciton transition after a single excitation of the aggregate. It accounts for the observed short-wavelength shift of the J-band of the pseudoisocyanine (PIC) J-aggregates after their optical excitation. The comparison of the experimental energy of the shift with its theoretical evaluation allows to estimate the number of monomers forming a typical PIC J-aggregate in the solutionN ?20–30.  相似文献   

17.
The CIS and EOM-CCSD adiabatic geometries for the first excited states of a set of small molecules (C2H4, C2H2, H2C=O, H2C=S, CS2, CO2, SO2, NO2) have been calculated using the 6-311++G** basis set to see if the former geometries can be good starting points for optimizations at the latter theoretical level. With most of the molecules, there is fairly good agreement between the results from the two methods, and EOM-CCSD gives good agreement with the available experimental data. A detailed discussion of the lowest-lying singlet excited states in CO2 and CS2 is presented, highlighting the pronounced differences in electronic character and equilibrium structure displayed by these isovalent species. The origins of the structural distortions that are frequently found for the adiabatic excited states are examined with the aid of deformation density plots and the electron localization function (ELF).  相似文献   

18.
In Phillips' spectroscopic theory of semiconductors, the covalency and ionicity are derived empirically from the average band gap between the highest valence and lowest conduction bands. In this paper an explicit expression for the average band gap is derived based on a continued fraction representation of the polarizability matrix. Results of a calculation for six covalent and polar semiconductors, using the pseudopotential model, are presented and compare favorably with experimental values.  相似文献   

19.
This contribution provides a summary of proposed theoretical and computational studies on excited state dynamics in molecular aggregates, as an important part of the National Natural Science Foundation (NNSF) Major Project entitled "Theoretical study of the low-lying electronic excited state for molecular aggregates". This study will focus on developments of novel methods to simulate excited state dynamics of molecular aggregates, with the aim of understanding several important chemical physics processes, and providing a solid foundation for predicting the opto-electronic properties of organic functional materials and devices. The contents of this study include: (1) The quantum chemical methods for electronic excited state and electronic couplings targeted for dynamics in molecular aggregates; (2) Methods to construct effective Hamiltonian models, and to solve their dynamics using system-bath approaches; (3) Non-adiabatic mixed quantum-classic methods targeted for molecular aggregates; (4) Theoretical studies of charge and energy transfer, and related spectroscopic phenomena in molecular aggregates.  相似文献   

20.
In this study, we present a way of controlling the formation of the two types of zeaxanthin aggregates in hydrated ethanol: J-zeaxanthin (head-to-tail aggregate, characteristic absorption band at 530 nm) and H-zeaxanthin (card-pack aggregate, characteristic absorption band at 400 nm). To control whether J- or H- zeaxanthin is formed, three parameters are important: (1) pH, that is, the ability to form a hydrogen bond; (2) the initial concentration of zeaxanthin, that is, the distance between zeaxanthin molecules; and (3) the ratio of ethanol/water. To create H-aggregates, the ability to form hydrogen bonds is crucial, while J-aggregates are preferentially formed when hydrogen-bond formation is prevented. Further, the formation of J-aggregates requires a high initial zeaxanthin concentration and a high ethanol/water ratio, while H-aggregates are formed under the opposite conditions. Time-resolved experiments revealed that excitation of the 530-nm band of J-zeaxanthin produces a different relaxation pattern than excitation at 485 and 400 nm, showing that the 530-nm band is not a vibrational band of the S2 state but a separate excited state formed by J-type aggregation. The excited-state dynamics of zeaxanthin aggregates are affected by annihilation that occurs in both J- and H-aggregates. In H-aggregates, the dominant annihilation component is on the subpicosecond time scale, while the main annihilation component for the J-aggregate is 5 ps. The S(1) lifetimes of aggregates are longer than in solution, yielding 20 and 30 ps for H- and J-zeaxanthin, respectively. In addition, H-type aggregation promotes a new relaxation channel that forms the zeaxanthin triplet state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号