共查询到20条相似文献,搜索用时 0 毫秒
1.
Muresan AZ Thamyongkit P Diers JR Holten D Lindsey JS Bocian DF 《The Journal of organic chemistry》2008,73(18):6947-6959
Insight into the electronic communication between the individual constituents of multicomponent molecular architectures is essential for the rational design of molecular electronic and/or photonic devices. To clock the ground-state hole/electron-transfer process in oxidized multiporphyrin architectures, a p-diphenylethyne-linked zinc porphyrin dyad was prepared wherein one porphyrin bears two (13)C atoms and the other porphyrin is unlabeled. The (13)C atoms are located at the 1- and 9-positions (alpha-carbons symmetrically disposed to the position of linker attachment), which are sites of electron/spin density in the a(1u) HOMO of the porphyrin. The (13)C labels were introduced by reaction of KS(13)CN with allyl bromide to give the allyl isothiocyanate, which upon Trofimov pyrrole synthesis followed by methylation gave 2-(methylthio)pyrrole-2-(13)C. Reaction of the latter with paraformaldehyde followed by hydrodesulfurization gave dipyrromethane-1,9-(13)C, which upon condensation with a dipyrromethane-1,9-dicarbinol bearing three pentafluorophenyl groups gave the tris(pentafluorophenyl)porphyrin bearing (13)C labels at the 1,9-positions and an unsubstituted meso (5-) position. Zinc insertion, bromination at the 5-position, and Suzuki coupling with an unlabeled porphyrin bearing a suitably functionalized diphenylethyne linker gave the regiospecifically labeled zinc porphyrin dyad. Examination of the monocation of the isotopically labeled dyad via electron paramagnetic resonance (EPR) spectroscopy (and comparison with the monocations of benchmark monomers, where hole transfer cannot occur) showed that the hole transfer between porphyrin constituents of the dyad is slow (<10(6) s(-1)) on the EPR time scale at room temperature. The slow rate stems from the a(1u) HOMO of the electron-deficient porphyrins, which has a node at the site of linker connection. In contrast, analogous dyads of electron-rich porphyrins (wherein the HOMO is a(2u) and has a lobe at the site of linker connection) studied previously exhibit rates of hole transfer that are fast (>5 x 10(7) s(-1)) on the EPR time scale at room temperature. 相似文献
2.
The ability to incorporate distinct metalloporphyrins at designated sites in multiporphyrin arrays is essential for diverse applications in materials and biomimetic chemistry. The synthesis of such mixed-metal arrays via acid catalyzed reactions has largely been restricted to metalloporphyrins of stability class II (e.g., Cu, Co, Ni) or I. We describe routes for the rational synthesis of mixed-metal arrays via acid-catalyzed condensations that are compatible with metalloporphyrins of stability class III (e.g., Zn) and IV (e.g., Mg). The routes are demonstrated for p-phenylene-linked arrays. The key finding is that several mild Lewis acids [InCl(3), Sc(OTf)(3), Yb(OTf)(3), and Dy(OTf)(3)], which are known to catalyze the dipyrromethane + dipyrromethane-dicarbinol condensation in CH(2)Cl(2) at room temperature without acidolysis, do not demetalate zinc or magnesium porphyrins under the same conditions. Rational routes to porphyrin dyads and triads employ reaction of a (porphyrin)-dipyrromethane and a (porphyrin)-dipyrromethane-dicarbinol. The porphyrin-forming reactions (six examples) proceed in yields of 18-28%. The metalation states of the arrays prepared in this manner include Zn-free base (ZnFb), MgFb, ZnFbMg, ZnFbZn, and ZnFbFb. Studies of the catalysis process indicate that the dipyrromethane + dipyrromethane-dicarbinol condensation is catalyzed by both the Lewis acid and a Br?nsted acid derived in situ from the Lewis acid. Taken together, the ability to employ otherwise "acid-labile" metalloporphyrins as precursors in condensation procedures should broaden the scope of accessible mixed-metal multiporphyrin arrays and motivate further studies of the application of mild Lewis acid catalysts in porphyrin chemistry. 相似文献
3.
Two types of multiporphyrin arrays, mediated by PdCl4(2-) complex ions at the air-water interface, were alternately transferred onto solid supports to form three-dimensional organized multilayers by a layer-by-layer method. 相似文献
4.
Selective cross-metathesis of type I and type II meso-functionalized porphyrin olefins afforded alkenyl-coupled dimeric and trimeric porphyrin systems in good yield with excellent E/Z selectivity. The synthetic utility of the method is demonstrated through the preparation of mixed metalated (M = 2H, Zn) porphyrin dimer and trimer. [reaction: see text] 相似文献
5.
Since highly symmetric cyclic architecture of light-harvesting antenna complex LH2 in purple bacteria was revealed in 1995, there has been a renaissance in developing cyclic porphyrin arrays to duplicate natural systems in terms of high efficiency, in particular, in transferring excitation energy. This tutorial review highlights the mechanisms and rates of excitation energy transfer (EET) in a variety of synthetic cyclic porphyrin arrays on the basis of time-resolved spectroscopic measurements performed at both ensemble and single-molecule levels. Subtle change in structural parameters such as connectivity, distance, and orientation between neighboring porphyrin moieties exquisitely modulates not only the nature of interchromophoric interactions but also the rates and efficiencies of EET. The relationship between the structure and EET dynamics described here should assist a rational design of novel cyclic porphyrin arrays, more contiguous to real applications in artificial photosynthesis. 相似文献
6.
Choi MS Yamazaki T Yamazaki I Aida T 《Angewandte Chemie (International ed. in English)》2004,43(2):150-158
Recent progress in fundamental studies on multiporphyrin arrays has provided structural parameters for the molecular design of artificial light-harvesting antennae which mimic the wheel-like antenna complexes of photosynthetic purple bacteria. Covalent and noncovalent approaches have been employed for the construction of artificial light-harvesting multiporphyrin arrays. Such arrays are categorized into ring-shaped, windmill-shaped, star-shaped, and dendritic architectures. In particular, dendritic multiporphyrin arrays have been proven to be promising candidates for both providing a large absorption cross-section and enabling the vectorial transfer of energy over a long distance to a designated point. Such molecular and supramolecular systems are also expected to be potent components for molecular electronics and photonic devices. 相似文献
7.
Stulz E Scott SM Ng YF Bond AD Teat SJ Darling SL Feeder N Sanders JK 《Inorganic chemistry》2003,42(20):6564-6574
The synthesis of linear multiporphyrin arrays with mono- and bisphosphine-substituted porphyrins as ligand donors and ruthenium(II) or rhodium(III) porphyrins as ligand acceptors is described. With appropriate amounts of the building blocks mixed, linear dimeric and trimeric arrays have been synthesized and analyzed by (1)H NMR and (31)P NMR spectroscopy. The Ru/Rh acceptor porphyrins can be located either at the periphery or in the center of the array. Likewise, the monophosphine porphyrins can be positioned at the periphery, thus allowing a high degree of freedom in the overall composition of the arrays. This way, both donor and acceptor porphyrins can act as chain extenders or terminators. One of the trimeric complexes with two nickel and one ruthenium porphyrin has also been analyzed by X-ray crystallography. Attempts have also been made to synthesize higher order arrays by mixing appropriate amounts of the porphyrins; however, from the NMR data it cannot be concluded if monodisperse five, seven, or nine porphyrin arrays are present or if the solutions are composed of a statistical mixture of smaller and larger arrays. 相似文献
8.
Choi MS Aida T Yamazaki T Yamazaki I 《Chemistry (Weinheim an der Bergstrasse, Germany)》2002,8(12):2668-2678
A series of star- and cone-shaped dendritic multiporphyrin arrays, (nPZn)4PFB and (nPZn)1PFB, respectively, that contain energy-donating dendritic zinc porphyrin (PZn) wedges of different numbers (n = 1, 3, and 7) of the PZn units, attached to an energy-accepting free-base porphyrin (PFB) core, were synthesized by a convergent growth approach. For the cone-shaped series ((nPZn)1PFB), the efficiency of energy transfer (phi ENT) from the photoexcited PZn units to the focal PFB core, as evaluated from the fluorescence lifetimes of the PZn units, considerably decreased as the generation number increased: (1PZn)1PFB (86%), (3PZn)1PFB (66%), and (7PZn)1PFB (19%). In sharp contrast, the star-shaped series ((nPZn)4PFB) all showed high phi ENT values: (1PZn)4PFB (87%), (3PZn)4PFB (80%), and (7PZn)4PFB (71%). Energy transfer efficiencies of (3PZn)4-ester-PFB, (1PZn)4-ester-PFB, and (3PZn)1-ester-PFB, whose dendritic PZn wedges are connected by an ester linkage to the PFB core, were almost comparable to those of the corresponding ether-linked versions. Fluorescence depolarization (P) studies showed much lower P values for star-shaped (7PZn)4PFB and (3PZn)4PFB than cone-shaped (7PZn)1PFB and (3PZn)1PFB, respectively, indicating a highly efficient energy migration among the PZn units in the star-shaped series. Such a morphology-assisted photochemical event is probably responsible for the excellent light-harvesting activity of large (7PZn)4PFB molecules. 相似文献
9.
Okamura WH Zhu GD Hill DK Thomas RJ Ringe K Borchardt DB Norman AW Mueller LJ 《The Journal of organic chemistry》2002,67(5):1637-1650
Isotope-labeled drug molecules may be useful for probing by NMR spectroscopy the conformation of ligand associated with biological hosts such as membranes and proteins. Triple-labeled [7,9,19-(13)C(3)]-vitamin D(3) (56), its 25-hydroxylated and 1 alpha,25-dihydroxylated metabolites (58 and 68, respectively), and other labeled materials have been synthesized via coupling of [9-(13)C]-Grundmann's ketone 39 or its protected 25-hydroxy derivative 43 with labeled A ring enyne fragments 25 or 26. The labeled CD-ring fragment 39 was prepared by a sequence involving Grignard addition of [(13)C]-methylmagnesium iodide to Grundmann's enone 28, oxidative cleavage, functional group modifications leading to seco-iodide 38, and finally a kinetic enolate S(N)2 cycloalkylation. The C-7,19 double labeling of the A-ring enyne was achieved by the Corey-Fuchs/Wittig processes on keto aldehyde 11. By employing these labeled fragments in the Wilson-Mazur route, the C-7,9,19 triple-(13)C-labeled metabolites 56, 58, and 68 as well as other (13)C-labeled metabolites have been prepared. In an initial NMR investigation of one of the labeled metabolites prepared in this study, namely [7,9,19-(13)C(3)]-25-hydroxyvitamin D(3) (58), the three (13)C-labeled carbons of the otherwise water insoluble steroid could be clearly detected by (13)C NMR analysis at 0.1 mM in a mixture of CD(3)OD/D(2)O (60/40) or in aqueous dimethylcyclodextrin solution and at 2 mM in 20 mM sodium dodecyl sulfate (SDS) aqueous micellar solution. In the SDS micellar solution, a double half-filter NOESY experiment revealed that the distance between the H(19Z) and H(7) protons is significantly shorter than that of the corresponding distance calculated from the solid state (X-ray) structure of the free ligand. The NMR data in micelles reveals that 58 exists essentially completely in the alpha-conformer with the 3 beta-hydroxyl equatorially oriented, just as in the solid state. The shortened distance (H(19Z))-H(7)) in micellar solutions as compared to that in the solid state is most easily rationalized on the basis that the 5(10)-torsion angle in 58 is decreased in micellar solutions as compared to that in the solid state. 相似文献
10.
Debatin M Takekoshi T Rameshan R Reichsöllner L Ferlaino F Grimm R Vexiau R Bouloufa N Dulieu O Nägerl HC 《Physical chemistry chemical physics : PCCP》2011,13(42):18926-18935
We perform one- and two-photon high resolution spectroscopy on ultracold samples of RbCs Feshbach molecules with the aim to identify a suitable route for efficient ground-state transfer in the quantum-gas regime to produce quantum gases of dipolar RbCs ground-state molecules. One-photon loss spectroscopy allows us to probe deeply bound rovibrational levels of the mixed excited (A(1)Σ(+)-b(3)Π)0(+) molecular states. Two-photon dark state spectroscopy connects the initial Feshbach state to the rovibronic ground state. We determine the binding energy of the lowest rovibrational level |v' = 0, J' = 0> of the X(1)Σ(+) ground state to be D = 3811.5755(16) cm(-1), a 300-fold improvement in accuracy with respect to previous data. We are now in the position to perform stimulated two-photon Raman transfer to the rovibronic ground state. 相似文献
11.
Sangita SantraDuraisamy Kumaresan Neeraj AgarwalMangalampalli Ravikanth 《Tetrahedron》2003,59(13):2353-2362
Synthesis of a series of 21-thia and 21-oxoporphyrin building blocks containing two pyridyl functional groups at the meso positions in a cis fashion is reported. The building blocks were used to synthesize a series of cationic water-soluble 21-thia and 21-oxoporphyrins. An unsymmetrical non-covalent trimer containing two dissimilar porphyrin cores such as one N3S and two N4 porphyrins cores was also constructed using the pyridyl porphyrin building blocks reported here. 相似文献
12.
《Chemical physics》1987,116(3):429-448
The kinetics of intramolecular photoinduced electron transfer in a series of pyromellitimide-bridge porphyrins have been studied using transient absorption and fluoresence techniques. The dependence of both charge separation and recombination rates on connecting chain length, metallation state, coordination state, conformation, solvent and temperature have been systematically measured and found to be broadly in agreement with theoretical predictions. In particular, the inverted region is observed at large exoergicity. Also, in the inverted region, when the porphyrin to pyromellitimide separation is large the electron transfer rate can be faster than at small separations; this is also explained by theory. At low temperatures, temperature-independent nuclear tunnelling limits the electron transfer rate, while in solvents having a slow dielectric relaxation this solvent reorientation also limits the rate. Fluorescence data provide evidence of multiple conformations in the free base compounds but in the longer-chained Zn and Mg derivatives, where the pyromellitimide oxygen atoms can bond to the metal, molecular conformations are limited. On addition of basic ligands, this metal to oxygen bonding is released and the electron transfer is switched off. 相似文献
13.
Ramachandran R Ladizhansky V Bajaj VS Griffin RG 《Journal of the American Chemical Society》2003,125(50):15623-15629
The rotational resonance width (R2W) experiment is a constant-time version of the rotational resonance (R2) experiment, in which the magnetization exchange is measured as a function of sample spinning frequency rather than the mixing time. The significant advantage of this experiment over conventional R2 is that both the dipolar coupling and the relaxation parameters can be independently and unambiguously extracted from the magnetization exchange profile. In this paper, we combine R2W with two-dimensional 13C-13C chemical shift correlation spectroscopy and demonstrate the utility of this technique for the site-specific measurement of multiple 13C-13C distances in uniformly labeled solids. The dipolar truncation effects, usually associated with distance measurements in uniformly labeled solids, are considerably attenuated in R2W experiments. Thus, R2W experiments are applicable to uniformly labeled biological systems. To validate this statement, multiple 13C-13C distances (in the range of 3-6 A) were determined in N-acetyl-[U-13C,15N]l-Val-l-Leu with an average precision of +/-0.5 A. Furthermore, the distance constraints extracted using a two-spin model agree well with the X-ray crystallographic data. 相似文献
14.
Convergent synthetic pathways were devised for efficient synthesis of a series of uniformly (13)C labeled polycyclic aromatic hydrocarbons de novo from U-(13)C-benzene and other simple commercially-available (13)C-starting compounds. All target products were obtained in excellent yields, including the alternant PAH U-(13)C-naphthalene, U-(13)C-phenanthrene, U-(13)C-anthracene, U-(13)C-benz[a]anthracene, U-(13)C-pyrene and the nonalternant PAH U-(13)C-fluoranthene. 相似文献
15.
Carbon-13 NMR studies on a series of high spin iron(III) porphyrins, namely tetraphenylporphyrin iron(III) halides [Fe(TPP)
X, X=Cl, Br, I] in CDCl3 solution are reported. As expected the13C shifts are found to be an order of magnitude larger than the corresponding proton shifts. The dipolar contribution, which
is quite important for the proton NMR, becomes much less significant for the13C shifts. No systematic variation in the13C shift across the series is observed, except for the meso-carbon which shows a small but gradual decrease in going from the
chloro to the iodo complex. The13C shift for the various carbon atoms of the porphyrin ligand shows interesting pattern which is discussed in terms of spin
delocalisation mechanisms. 相似文献
16.
Van Melckebeke H Simorre JP Brutscher B 《Journal of the American Chemical Society》2004,126(31):9584-9591
New NMR experiments are presented for the measurement of methyl-methyl distances in (13)C-labeled proteins from a series of amino acid-type separated 2D or 3D NOESY spectra. Hadamard amino acid-type encoding of the proximal methyl groups provides the high spectral resolution required for unambiguous methyl-methyl NOE assignment, which is particularly important for fast global fold determination of proteins. The experiments can be applied to a wide range of protein systems, as exemplified for two small proteins, ubiquitin and MerAa, and the 30 kDa BRP-Blm complex. 相似文献
17.
Patching SG Herbert RB O'Reilly J Brough AR Henderson PJ 《Journal of the American Chemical Society》2004,126(1):86-87
Obtrusive 13C-backgrounds can be a problem in 13C NMR-based studies of ligand binding to bacterial membrane transport proteins in their natural state in inner membranes. This is largely solved for the bacterial galactose-H+ symport protein GalP by growing the producing organism Escherichia coli on 13C-depleted glucose (13C = 0.07%) as the main carbon source. 13C solid-state NMR-based binding studies for the inhibitor forskolin 1 and the transported substrate glucose 2, both singly labeled with 13C, are reported and discussed. For 1, tight binding is observed, while for 2, significant exchange takes place during the time scale of the NMR experiment. 相似文献
18.
Reported herein are the hydrogen atom transfer (HAT) reactions of two closely related dicationic iron tris(alpha-diimine) complexes. FeII(H2bip) (iron(II) tris[2,2'-bi-1,4,5,6-tetrahydropyrimidine]diperchlorate) and FeII(H2bim) (iron(II) tris[2,2'-bi-2-imidazoline]diperchlorate) both transfer H* to TEMPO (2,2,6,6-tetramethyl-1-piperidinoxyl) to yield the hydroxylamine, TEMPO-H, and the respective deprotonated iron(III) species, FeIII(Hbip) or FeIII(Hbim). The ground-state thermodynamic parameters in MeCN were determined for both systems using both static and kinetic measurements. For FeII(H2bip) + TEMPO, DeltaG degrees = -0.3 +/- 0.2 kcal mol-1, DeltaH degrees = -9.4 +/- 0.6 kcal mol-1, and DeltaS degrees = -30 +/- 2 cal mol-1 K-1. For FeII(H2bim) + TEMPO, DeltaG degrees = 5.0 +/- 0.2 kcal mol-1, DeltaH degrees = -4.1 +/- 0.9 kcal mol-1, and DeltaS degrees = -30 +/- 3 cal mol-1 K-1. The large entropy changes for these reactions, |TDeltaS degrees | = 9 kcal mol-1 at 298 K, are exceptions to the traditional assumption that DeltaS degrees approximately 0 for simple HAT reactions. Various studies indicate that hydrogen bonding, solvent effects, ion pairing, and iron spin equilibria do not make major contributions to the observed DeltaS degrees HAT. Instead, this effect arises primarily from changes in vibrational entropy upon oxidation of the iron center. Measurement of the electron-transfer half-reaction entropy, |DeltaS degrees Fe(H2bim)/ET| = 29 +/- 3 cal mol-1 K-1, is consistent with a vibrational origin. This conclusion is supported by UHF/6-31G* calculations on the simplified reaction [FeII(H2N=CHCH=NH2)2(H2bim)]2+...ONH2 left arrow over right arrow [FeII(H2N=CHCH=NH2)2(Hbim)]2+...HONH2. The discovery that DeltaS degrees HAT can deviate significantly from zero has important implications on the study of HAT and proton-coupled electron-transfer (PCET) reactions. For instance, these results indicate that free energies, rather than enthalpies, should be used to estimate the driving force for HAT when transition-metal centers are involved. 相似文献
19.
20.
The stepwise coordination of meso-4'-pyridyl/phenyl porphyrins (4'-PyPs) to different metal centers proved to be an efficient synthetic approach leading to unsymmetrical arrays containing porphyrins and coordination compounds. The first step of this process, treatment of 4'-PyPs with a less than stoichiometric amount of cis,fac-RuCl2(Me2-SO)3(CO) (1), leads to the selective coordination of [cis,cis,cis-RuCl2(Me2SO)2(CO)] fragments ([Ru]) to some of the peripheral 4'-N sites of the 4'-PyPs. Column separation afforded four partially ruthenated 4'-PyPs in pure form: 4'-cis-DPyP[Ru] (2), 4'-trans-DPyP[Ru] (3), (4'-TPyP)[Ru] (4), and (4'-TPyP)[Ru]3 (5). These compounds, which have residual unbound peripheral 4'-N(py) sites (either one or three), were allowed to react with other metal centers that may belong either to a metalloporphyrin or to a coordination compound. When building blocks 2-5 were treated with [Ru(TPP)(CO)(EtOH)] (TPP = meso-tetraphenylporphyrin) in chloroform at room temperature, axial coordination of Ru(TPP)(CO) units ((Ru)) to the available 4'-N(py) sites readily occurred, generating the following arrays containing both perpendicular porphyrins and coordination compounds: (Ru)-(mu-4'-cis-DPyP)[Ru], (Ru)(mu-4'-trans-DPyP)[Ru], (Ru)3(mu-4'-TPyP)[Ru], and (Ru)(mu-4'-TPyP)[Ru]3. Furthermore, building blocks 2, 3, and 5 were treated with a series of coordination compounds capable of binding two pyridylporphyrins either cis to each other (trans-RuCl2(Me2SO)4 and trans,cis,cis-RuCl2(Me2SO)2(CO)2) or trans to each other (trans-PdCl2(C6H5CN)2). Homo- (Ru) and heterobimetallic (Ru-Pd) arrays with as many as seven metal atoms (six Ru and one Pd) and two 4'-PyPs were obtained as follows: trans,cis,cis-RuCl2(Me2SO)2(4'-cis-DPyP[Ru])2, trans,cis,cis-RuCl2(Me2SO)2(4'-trans-DPyP[Ru])2, trans,cis,cis-RuCl2(CO)2(4'-cis-DPyP[Ru])2, and trans-PdCl2(4'-TPyP[Ru]3)2. All the products were thoroughly characterized by 1H NMR spectroscopy. Since the [Ru] fragment is chiral, diastereomers are formed when two or more [Ru] units are bound to a porphyrin. We found that when two 4'-cis-DPyP[Ru] (2) units are coordinated cis to each other on the same metal center, the mutual anisotropic effect of the cis porphyrins differentiates the sulfoxide methyl resonances for the two forms. These and other results indicate that the pyridyl units react independently of the presence or absence of a substituent on the other py rings. Thus, the synthetic strategy should be a general method for linking diverse metal centers through pyridylporphyrins. 相似文献