首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ab initio based configuration interaction calculations have been carried out to study the low-lying electronic states and spectroscopic properties of the heaviest nonradioactive silicon chalcogenide molecule and its monopositive ion. Spectroscopic constants and potential energy curves of states of both SiTe and SiTe+ within 5 eV are reported. The calculated dissociation energies of SiTe and SiTe+ are 4.41 and 3.52 eV, respectively. Effects of the spin-orbit coupling on the electronic spectrum of both the species are studied in detail. The spin-orbit splitting between the two components of the ground state of SiTe+ is estimated to be 1880 cm(-1). Transitions such as 0+ (II)-X1Sigma(+)0+, 0+ (III)-X1Sigma(+)0+, E1Sigma(+)0+ -X1Sigma(+)0+, and A1Pi1-X1Sigma(+)0+ are predicted to be strong in SiTe. The radiative lifetime of the A1Pi state is less than a microsecond. The X(2)2Pi(1/2)-X(1)2Pi(3/2) transition in SiTe+ is allowed due to spin-orbit mixing. However, it is weak in intensity with a partial lifetime for the X2 state of about 108 ms. The electric dipole moments of both SiTe and SiTe+ in their low-lying states are calculated. The vertical ionization energies for the ionization of the ground-state SiTe to different ionic states are also reported.  相似文献   

2.
Ab initio based multireference configuration interaction calculations are carried out for SnS and its monopositive ion using effective core potentials. Potential energy curves and spectroscopic constants of the low-lying states of SnS and SnS+ are computed. The ground-state dissociation energies of the neutral and ionic species are about 4.71 and 2.86 eV, respectively which compare well with the available thermochemical data. The effect of d-electron correlation on the spectroscopic constants of a few low-lying states has been studied. The spin-orbit interaction has also been included to investigate its effect on the spectroscopic properties of both SnS and SnS+. Dipole moment and transition moment curves are also constructed as a function of the bond length. Transition probabilities of some dipole-allowed and spin-forbidden transitions are studied. Radiative lifetimes of a few low-lying states are estimated. The E1sigma+-X1sigma+ transition of SnS is predicted to be the strongest one. The components of the A2sigma(+)(1/2)-X2(2)pi(1/2) transition with parallel and perpendicular polarization are separately analyzed. The vertical ionization energies of the ground-state SnS to the ground and low-lying excited states of the monopositive ion are calculated.  相似文献   

3.
Potential energy curves and properties of the low-lying electronic states of tellurium oxide have been computed using a configuration interaction treatment that includes the spin-orbit coupling interaction. Relativistic effective core potentials (RECPs) are used to describe the inner shells of both the Te and O atoms. Good agreement is obtained for the spectroscopic constants of the X1-X2(3)sigma-, a1delta, and b1sigma+ states for which experimental data are available. The ratio of the parallel and perpendicular b-X transition moments, as well as the radiative lifetime of the b state, was computed, and both results were also found to be in good agreement with measurement. The energetic order of the electronic states in TeO appears to be very similar to that observed for the isovalent O2 molecule, but the Rydberg valence-mixing effects that are so prominent in the latter's spectrum (e.g., for the Schumann-Runge bands) are totally absent in TeO.  相似文献   

4.
Ab initio calculations on the low-lying electronic states of SiF+ are performed using the internally contracted multireference configuration interaction method with the Davidson correction and entirely uncontracted aug-cc-pV5Z basis set. The effects of spin-orbit coupling are accounted for by the state interaction approach with the full Breit-Pauli Hamiltonian. The entire 23 Omega states generated from the 12 valence Lambda-S states, which correlate with the first dissociation channel are studied for the first time. Good agreement is found between the calculated results and the available experimental data. The spin-orbit coupling effects on the potential energy curves and spectroscopic properties are studied. Various curve crossings are revealed, which could lead to the predissociation of the a3Pi, A1Pi, and (2)3Sigma+ states and the predissociation pathways are analyzed based upon the calculated spin-orbit matrix elements. The calculated ionization potentials of the ground-state SiF to a few states of SiF+ are in good agreement with the available experimental measurements. Moreover, the transition dipole moments of the dipole-allowed transitions and the transition properties for the A3Pi0+ -X1Sigma+ 0+ and B3Pi1-X1Sigma+ 0+ transitions are predicted, including the Franck-Condon factors and the radiative lifetimes.  相似文献   

5.
《Chemical physics letters》2008,450(4-6):221-227
Ab initio based multireference singles and doubles configuration interaction calculations have been carried out to study the electronic structure and spectroscopic properties of the SiC+ ion. Potential energy curves and spectroscopic constants (re, Te, ωe) of 14 low-lying doublet and quartet states of the ion are studied. The spin-orbit coupling has been included to see its effects on the spectroscopic properties. Transition probabilities of some quartet–quartet transitions are computed, while the spin-forbidden transitions are very weak. Dipole moments of all low-lying states are estimated by keeping the origin at the center of mass. The vertical and adiabatic ionization energies of SiC are also reported.  相似文献   

6.
The global potential energy curves for the 14 low-lying doublet and quartet Lambda-S states of InCl+ are calculated at the scalar relativistic MR-CISD+Q (multireference configuration interaction with single and double excitations, and Davidson's correction) level of theory. Spin-orbit coupling is accounted for via the state interaction approach with the full Breit-Pauli Hamiltonian, which leads to 30 Omega states. The computed spectroscopic constants of nine bound Lambda-S states and 17 bound Omega states are in good agreement with the available experimental data. The transition dipole moments and Franck-Condon factors of selected transitions are also calculated, from which the corresponding radiative lifetimes are derived.  相似文献   

7.
Ab initio configuration interaction calculations have been performed for the X 1Sigma+ and B 1Sigma+ electronic states of LiCl. Potential energy curves, dipole moment functions, and dipole transition moments have been computed for internuclear distances between R = 2.5a0 and 50a0. Single- and double-excitation configuration interaction wave functions were constructed using molecular orbitals obtained from a two-state averaged multiconfiguration self-consistent-field calculation. This procedure yielded an accurate energy splitting between the covalent and ionic separated-atom limits. The calculated avoided crossing of the X and B state curves occurs at R = 16.2a0, in close agreement with previous calculations using a semiempirical covalent-ionic resonance model. X 1Sigma+ state spectroscopic constants are in excellent agreement with experimental values.  相似文献   

8.
The potential energy curves of the low-lying electronic states of yttrium carbide (YC) and its cation are calculated at the complete active space self-consistent field and the multireference single and double excitation configuration interaction (MRSDCI) levels of theory. Fifteen low-lying electronic states of YC with different spin and spatial symmetries were identified. The X (4)Sigma- state prevails as the ground state of YC, and a low-lying excited A (4)Pi state is found to be 1661 cm(-1) higher at the MRSDCI level. The computations of the authors support the assignment of the observed spectra to a B (4)Delta(Omega=72)<--A (4)Pi(Omega=52) transition with a reinterpretation that the A (4)Pi state is appreciably populated under the experimental conditions as it is less than 2000 cm(-1) of the X (4)Sigma- ground state, and the previously suggested (4)Pi ground state is reassigned to the first low-lying excited state of YC. The potential energy curves of YC+ confirm a previous prediction by Seivers et al. [J. Chem. Phys. 105, 6322 (1996)] that the ground state of YC+ is formed through a second pathway at higher energies. The calculated ionization energy of YC is 6.00 eV, while the adiabatic electron affinity is 0.95 eV at the MRSDCI level. The computed ionization energy of YC and dissociation energy of YC+ confirm the revised experimental estimates provided by Seivers et al. although direct experimental measurements yielded results with greater errors due to uncertainty in collisional cross sections for YC+ formation.  相似文献   

9.
The RuC molecule has been a challenging species due to the open-shell nature of Ru resulting in a large number of low-lying electronic states. We have carried out state-of-the-art calculations using the complete active space multiconfiguration self-consistent field followed by multireference configuration interaction methods that included up to 18 million configurations, in conjunction with relativistic effects. We have computed 29 low-lying electronic states of RuC with different spin multiplicities and spatial symmetries with energy separations less than 38,000 cm(-1). We find two very closely low-lying electronic states for RuC, viz., 1Sigma+ and 3Delta with the 1Sigma+ being stabilized at higher levels of theory. Our computed spectroscopic constants and dipole moments are in good agreement with experiment although we have reported more electronic states than those that have been observed experimentally. Our computations reveal a strongly bound 1Sigma+ state with a large dipole moment which is most likely the experimentally observed ground state and an energetically close 3Delta state with a smaller dipole moment. Overall our computed spectroscopic constants of the excited states with energy separations less than 18,000 cm(-1) agree quite well with those of the corresponding observed states.  相似文献   

10.
The calculations on the potential energy curves and spectroscopic constants of the ground and low-lying excited states of BrCl+, one of the important molecular ions in environment science, have been performed by using the multireference configuration interaction method at high level of theory in quantum chemistry. Through analyses of the effects of the spin-orbit coupling interaction on the electronic structures and spectroscopic properties, the multiconfiguration characteristic of the X2Π ground state and low-lying excited states was established. The spin-orbit coupling splitting energy of the X2Π ground state was calculated to be 1814 cm−1, close to the experimental value 2070 cm−1. The spin-orbit coupling splitting energy of the 2Π(II) exited state was predicted to be 766 cm−1. The transition dipole moments and Frank-Condon factors of the 3/2(III)-X3/2 and 1/2(III)-1/2(I) transitions were estimated, and the radiative lifetimes of the two transitions were briefly discussed. Supported by the National Basic Research Program of China (Grant No. 2006CB601102) and the National Natural Science Foundations of China (Grant Nos. 20490210 and 20503001)  相似文献   

11.
High level ab initio calculations are performed on the molecular ion LiHe+. Potential energy curves for the low-lying singlet and triplet electronic states are calculated using the multi-reference configuration interaction and single-reference coupled cluster methods with large basis sets. The corresponding dipole moments and transition dipole moments functions are also determined. The basic spectroscopic properties and excitation energies of the electronic states are derived from rovibrational bound state calculations.  相似文献   

12.
The low-lying electronic states of TlX (X=F, Cl, Br, I, and At) are investigated using the configuration interaction based complete active space third-order perturbation theory [CASPT3(CI)] with spin-orbit coupling accounted for. The potential energy curves and the corresponding spectroscopic constants are reported. The results are grossly in good agreement with the available experimental data. The absorption spectra are simulated as well to reassign the experimental bands. The present results are also useful for guiding future experimental measurements.  相似文献   

13.
The effect of different basis sets for calculation of the spectroscopic constants of the ground state of sulfur monochloride (SCl) was analyzed using scalar relativistic multireference configuration interaction with single and double excitations plus Davidson correction. Then the generally contracted all-electronic correlation-consistent polarized valence quintuple zeta basis sets were selected to compute the electronic states of SCl including 12 valence and 9 Rydberg lambda-S states. The spin-orbit coupling effect was calculated via the state interaction approach with the full Breit-Pauli Hamiltonian. This effect splits these lambda-S states into 42 omega states. Potential-energy curves of all these states are plotted with the help of the avoided crossing rule between the electronic states of the same symmetry. The structural properties of these states are analyzed. Spectroscopic constants of bound excited states that have never been observed in experiment are obtained. The transition dipole moments and the Franck-Condon factors of several transitions from low-lying bound excited states to the ground state were also calculated.  相似文献   

14.
State-of-the-art ab initio techniques have been applied to compute the potential energy curves for the electronic states in the A(1)Σ(u)(+), c(3)Π(u), and a(3)Σ(u)(+) manifold of the strontium dimer, the spin-orbit and nonadiabatic coupling matrix elements between the states in the manifold, and the electric transition dipole moment from the ground X(1)Σ(g)(+) to the nonrelativistic and relativistic states in the A+c+a manifold. The potential energy curves and transition moments were obtained with the linear response (equation of motion) coupled cluster method limited to single, double, and linear triple excitations for the potentials and limited to single and double excitations for the transition moments. The spin-orbit and nonadiabatic coupling matrix elements were computed with the multireference configuration interaction method limited to single and double excitations. Our results for the nonrelativistic and relativistic (spin-orbit coupled) potentials deviate substantially from recent ab initio calculations. The potential energy curve for the spectroscopically active (1)0(u)(+) state is in quantitative agreement with the empirical potential fitted to high-resolution Fourier transform spectra [A. Stein, H. Kno?ckel, and E. Tiemann, Eur. Phys. J. D 64, 227 (2011)]. The computed ab initio points were fitted to physically sound analytical expressions, and used in converged coupled channel calculations of the rovibrational energy levels in the A+c+a manifold and line strengths for the A(1)Σ(u)(+)←X(1)Σ(g (+) transitions. Positions and lifetimes of quasi-bound Feshbach resonances lying above the (1)S(0) + (3)P(1) dissociation limit were also obtained. Our results reproduce (semi)quantitatively the experimental data observed thus far. Predictions for on-going and future experiments are also reported.  相似文献   

15.
A theoretical study of the low-lying singlet and triplet states of ClONO is presented. Calculations of excitation energies and oscillator strengths are reported using multireference configuration interaction, MRD-CI, methods with the cc-pVDZ + sp basis set. The calculations predict the dominant transition, 4(1)A' <-- 1(1)A', at 5.70 eV. The transition 2(1)A' <-- 1(1)A', at 4.44 eV, with much lower intensity nicely matches the experimental absorption maximum observed around 290 nm (4.27 eV). The potential energy curves for both states are found to be highly repulsive along the Cl-O coordinate implying that direct and fast dissociation to the Cl + NO2 products will occur. Photodissociation along the N-O coordinate is less likely because of barriers on the order of 0.3 eV for low-lying excited states. A comparison between the calculated electronic energies related to the two dominant excited states of ClONO and BrONO indicates that the transitions lie about 0.6 eV higher if bromine is replaced by chlorine. The stratospheric chemistry implications of ClONO and BrONO are discussed.  相似文献   

16.
Complete active space self-consistent field (CASSCF), multireference configuration interaction (MRCI), and restricted-spin coupled-cluster singles-doubles with perturbative triples [RCCSD(T)] calculations have been carried out on low-lying doublet and quartet states of SnCl2+, employing basis sets of up to aug-cc-pV5Z quality. Effects of core correlation and off-diagonal spin-orbit interaction on computed vertical ionization energies were investigated. The best theoretical estimate of the adiabatic ionization energy (including zero-point vibrational energy correction) to the X2A1 state of SnCl2+ is 10.093+/-0.010 eV. The first photoelectron band of SnCl2 has also been simulated by employing RCCSD(T)/aug-cc-pV5Z potential energy functions and including Duschinsky rotation and anharmonicity.  相似文献   

17.
We have studied the potential-energy curves and the spectroscopic constants of the ground and low-lying excited states of NbC by employing the complete active space self-consistent field method with relativistic effective core potentials followed by multireference configuration-interaction calculations. We have identified 23 low-lying electronic states of NbC with different spin multiplicities and spatial symmetries within 40,000 cm(-1). At the multireference single and double configuration interaction level of theory the 2sigma+ and 2delta states are nearly degenerated, with the 2delta state located 187 cm(-1) lower than the 2sigma+ state. The estimated spin-orbit splitting for the 2delta state results in a 2delta(3/2) ground state and A 2sigma+ which is placed 650 cm(-1) above the ground state, in reasonable agreement with the experimental result, 831 cm(-1). Our computed spectroscopic constants are in good agreement with experimental values although our results differ from those of a previous density-functional investigation of the excited states of NbC, mainly due to the strong multiconfigurational character of NbC. In the present work we have not only suggested assignments for the observed states but also computed more electronic states that are yet to be observed experimentally.  相似文献   

18.
The low-lying electronic states of NiH and NiAt are investigated by using multireference second-order perturbation theory with relativistic effects taken into account. The potential energy curves as well as the corresponding spectroscopic constants are reported. The results are grossly in good agreement with the available experimental data and should thus be very useful for guiding future experimental measurements. A cross comparison with other nickel monohalides NiX (X = F, Cl, Br, and I) reveals that the change in the spin-orbit splittings when going from lighter to heavier ligands results more from the state interaction than from the relativistic effects of the ligands.  相似文献   

19.
The electronic states of the BBr molecule, including 12 valence states and 12 low-lying Rydberg states, have been studied at the theoretical level of MR-CISD+Q with all-electron aug-cc-pVQZ basis sets and Douglas-Kroll [Ann. Phys. (N.Y.) 82, 89 (1974)] scalar relativistic correction. The spin-orbit coupling effect in the valence states was calculated by the state interaction approach with the full Breit-Pauli Hamiltonian. This is the first multireference ab initio study of the excited electronic states of BBr. Potential energy curves of all states were plotted with the help of the avoided crossing rule between electronic states of the same symmetry. The structural properties of these states were analyzed. Computational results reproduced most experimental data well. The transition properties of the a (3)Pi(0(+) ), a (3)Pi(1), and A (1)Pi(1) states to the ground state X (1)Sigma(0(+) ) (+) transitions were obtained, including the transition dipole moments, the Franck-Condon factors, and the radiative lifetimes. The evaluated radiative lifetime of the a (3)Pi(0(+) ), and a (3)Pi(1) states are near 1 ms, much longer than that of the A (1)Pi(1) state.  相似文献   

20.
We report a series of quantum-chemical calculations for the ground and some of the low-lying excited states of an isolated LiYb molecule by the spin-orbit multistate complete active space second-order perturbation theory (SO-MS-CASPT2). Potential energy curves, spectroscopic constants, and transition dipole moments (TDMs) at both spin-free and spin-orbit levels are obtained. Large spin-orbit effects especially in the TDMs of the molecular states dissociating to Yb((3)P(0,1,2)) excited states are found. To ensure the reliability of our calculations, we test five types of incremental basis sets and study their effect on the equilibrium distance and dissociation energy of the ground state. We also compare CASPT2 and CCSD(T) results for the ground state spectroscopic constants at the spin-free relativistic level. The discrepancies between the CASPT2 and CCSD(T) results are only 0.01 ? in equilibrium bond distance (R(e)) and 200 cm(-1) in dissociation energy (D(e)). Our CASPT2 calculation in the supermolecular state (R=100 a.u.) with the largest basis set reproduces experimental atomic excitation energies within 3% error. Transition dipole moments of the super molecular state (R=100 a.u.) dissociating to Li((2)P) excited states are quite close to experimental atomic TDMs as compared to the Yb((3)P) and Yb((1)P) excited states. The information obtained from this work would be useful for ultracold photoassociation experiments on LiYb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号