首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Times of metastable droplet relaxation to their equilibrium state are calculated at saturated vapor pressures, depending on the droplet size. It is shown that for small droplets with radius R = 6 molecular diameters (or ~2 nm) the relaxation times are ~1 ns (which is comparable to the characteristic flight times of rarefied gas molecules). For large droplets with radius R ~ 800 molecular diameters, the relaxation times are as long as 10 μs. At a fixed droplet radius (6 ≤ R ≤ 800), the range of variation in relaxation time from the melting point to the critical temperature does not exceed one order of magnitude: the lower the temperature, the slower the relaxation process.  相似文献   

2.
Glass-forming monohydroxy alcohols exhibit not only a structural relaxation but also a slower, single-exponential Debye-type relaxation process which already freezes in the liquid phase. By using dielectric spectroscopy, we study how these relaxations evolve when the aprotic alkyl halide n-bromobutane is added to n-butanol, thereby diluting the hydrogen-bond network. The structural relaxation times smoothly vary over the concentration range of this completely miscible binary system. The Debye process remains unaffected by the dilution of the OH groups up to n-bromobutane mole fractions of about 50%. For larger hydroxy dilutions, it turns rather abruptly into a feature which develops significant spectral broadening and it becomes faster. In the dilute limit, the decoupling between the time scale of the Debye process and that of the structural relaxation amounts to almost 6 decades when extrapolated to the glass transition temperature. This relatively large, strongly concentration dependent decoupling is interpreted in analogy to normal modes in polymers. The present results suggest that the structural and the Debye-like responses of monohydroxy alcohols are unrelated.  相似文献   

3.
Spatially heterogeneous dynamics in supercooled glycerol over the temperature range 198 K (1.04T(g))-212 K (1.12T(g)) is investigated using widefield single molecule (SM) fluorescence microscopy. Measurements are performed using three different perylenedicarboximide probes to investigate whether probe size and probe-host interactions affect breadth of heterogeneity reported in the glassy host by such SM experiments. Rotational relaxation times of single probe molecules are measured, and for all probes, log-normal distributions of relaxation times are found. No significant change in relaxation time distribution as a function of temperature is evident for a given probe. However, across probes, probe rotational relaxation time is correlated with breadth of heterogeneous dynamics reported. Molecules that undergo changes in dynamics are identified using two complementary approaches that interrogate time scales between 10(3) and 10(6) τ(α), with τ(α) the structural relaxation time of glycerol. Exchange is found on the shortest time scales probed (~30 τ(c), with τ(c) the rotational correlation time of the probe) and is relatively temperature and probe independent. No evidence is found for additional exchange occurring on the longest time scales interrogated. Taken together with the fact that probes that rotate the fastest report the greatest breadth of spatially heterogeneous dynamics in the system, this indicates that exchange times reported from analysis of SM linear dichroism trajectories as described here are upper bounds on the average exchange time in the system.  相似文献   

4.
Glass-forming monohydroxy alcohols exhibit two dielectric relaxation signals with super-Arrhenius temperature dependence: a Debye peak and an asymmetrically broadened alpha-process. We explore the behavior of these distinct relaxation features in mixtures of such liquids by dielectric measurements. The study focuses on the viscous regime of two binary systems: 2-methyl-1-butanol with 2-ethyl-1-hexanol and 1-propanol with 3,7-dimethyl-1-octanol. We find that the logarithmic relaxation time, log(tau), of the Debye peak follows an ideal mixing law (linear change with mole fraction), even in the case of mixing structurally dissimilar components. By contrast, the log(tau) versus mole fraction curve for the alpha-process is nonlinear, indicative of slower structural relaxation relative to the expectation on the basis of ideal mixing behavior. The latter observation is analogous to the effect of composition on viscosity, heat of mixing, and glass-transition temperature, whereas the ideal mixing of log(tau) seen for the Debye peak is the exception. We conclude that the unusual ideal mixing behavior of dielectric relaxation in monohydroxy alcohols is not a result of structural similarity, but rather yet more evidence of the Debye process being decoupled from other dynamic and thermodynamic properties.  相似文献   

5.
Literature dielectric data of glycerol, propylene carbonate, and ortho-terphenyl show that the measured dielectric relaxation is a decade faster than the Debye expectation but still a decade slower than the breakdown of the shear modulus. From a comparison of time scales, the dielectric relaxation seems to be due to a process which relaxes not only the molecular orientation but also the entropy, the short range order, and the density. On the basis of this finding, we propose an alternative to the Gemant-DiMarzio-Bishop extension of the Debye picture.  相似文献   

6.
Molecular simulation is used to characterize the spatial dependence of collective motion in four saturated hydrocarbon polymers. The observable is the distinct intermediate scattering function, as measured in coherent quasielastic neutron scattering experiments. Ranges of 0.01-1000 ps in time and 2-14 A in spatial scale are covered. In this time range, a two-step relaxation, consisting of a fast exponential decay and a slower stretched decay, is observed for all spatial scales. The relaxation times for the fast process are very similar to those obtained by following self motion, with a small modulation of relaxation times near the peak in the static structure factor which is well described by the narrowing picture suggested by de Gennes. For the slow process, self and collective relaxation times have larger numerical differences and follow different scaling with spatial scale. The modulation of slow relaxation times is larger than that observed for the fast process, but is overestimated by the de Gennes prediction, which only works qualitatively.  相似文献   

7.
With the recognition that the Debye-type dielectric relaxation of liquid monohydroxy alcohols does not reflect the structural relaxation dynamics associated with the viscous flow and the glass transition, its behavior upon dilution is expected to differ from that of real alpha-processes. We have investigated the Debye-type dielectric relaxation of binary alcohol/alkane mixtures across the entire concentration range in the supercooled regimes. The focus is on 2-ethyl-1-hexanol in two nonpolar liquids, 3-methylpentane and squalane, which are more fluid and more viscous than the alcohol, respectively. The Debye relaxation is found to occur only for alcohol mole fractions x > 0.2 and is always accompanied by a non-Debye relaxation originating from the alcohol component. Prior to its complete disappearance, the Debye relaxation is subject to broadening. We observe that the Debye dynamics of 2-ethyl-1-hexanol is accelerated in the more fluid 3-methylpentane, while the more viscous squalane leads to longer Debye relaxation times. The present experiments also provide evidence that the breakdown of the Debye relaxation amplitude does not imply the absence of hydrogen-bonded structures.  相似文献   

8.
We report the relaxation times of electronic and vibrational coherence in the cyanine dye 1,1′,3,3,3′,3′‐hexamethyl‐4,4′,5,5′‐dibenzo‐2,2′‐indotricarbocyanine, measured using a 7.1 fs pulsed laser. The vibrational phase relaxation times are found to be between 380 and 680 fs in the ground and lowest excited singlet states. The vibrational dephasing times of the 294, 446, and 736 cm?1 modes are relatively long among the six modes associated with excited‐state wave packets. The slower relaxations are explained in terms of a coupled triplet of vibrational modes, which preserves coherence by forming a tightly bound group to satisfy the condition of circa conservation of vibrational energy. Using data from the negative‐time range (i.e., when the probe pulse precedes the pump pulse), the electronic phase relaxation time is found to be 31±1 fs. The dynamic vibrational mode in the excited state (1171 cm?1), detected in the positive‐time range, is also studied from the negative‐time traces under the same experimental conditions.  相似文献   

9.
The prominent Debye-type but non-Arrhenius dielectric relaxation is a feature common to many monohydroxy alcohols in their liquid state. Although this exponential process is often considered to reflect the primary structural relaxation, only a faster, smaller, and nonexponential relaxation peak correlates with viscous flow and mechanical relaxation. We provide dielectric relaxation data for 2-methyl-1-butanol, 2-ethyl-1-hexanol, and 3,7-dimethyl-1-octanol across ten decades in time. Based on these and previous results, we show that there exists a variety of dielectric to mechanical relaxation time ratios in the viscous regime, but a universal value of 100 for that ratio appears to evolve in the high temperature limit. The temperature dependence for both the relaxation time and strength of the Debye peak differs from the typical behavior of structural dynamics in terms of the alpha process. The implications of these findings for rationalizing the Debye-type dielectric process of hydrogen-bonded liquids are discussed.  相似文献   

10.
Dielectric relaxation dynamics of secondary amides is explored in their supercooled state near the glass transition temperature Tg by investigating N-ethylacetamide and its mixtures with N-methylformamide. All the samples are found to exhibit giant dielectric permittivities, reaching over 500 in N-methylformamide-rich mixtures around Tg. For both the neat and binary systems, the predominant relaxation peak is of the Debye-type throughout the viscous regime, which is an unexpected feature for a glass former with intermediate fragility. The present results combined with the earlier reported high-temperature data reveal that the dielectric strength delta epsilon(D) of the Debye relaxation extrapolates to zero at frequencies of 10(10)-10(11) Hz, which is about two orders of magnitude lower than the phonon frequency limit typical of the structural relaxation. This Debye process is remarkably similar to the dielectric behavior of many monohydroxy alcohols, which implies a common nature of purely exponential relaxation dynamics in these liquids. Based on the dielectric properties, we conclude that the Debye relaxation in the secondary amides is not a direct signature of the primary or alpha-relaxation, the latter being obscured at low temperatures due to the relatively low permittivity and close spectral proximity to the Debye peak. As in the case of monohydroxy alcohols, dielectric polarization and structure fluctuate on different time scales in secondary amides. The Kirkwood-Fr?hlich correlation factors for Debye-type liquids are also discussed.  相似文献   

11.
We studied the temperature dependence of the structural relaxation in poly(vinyl acetate) near the glass transition temperature with single molecule spectroscopy from Tg-1 K to Tg+12 K. The temperature dependence of the observed relaxation times matches results from bulk experiments; the observed relaxation times are, however, 80-fold slower than those from bulk experiments at the same temperature. We attribute this factor to the size of the probe molecule. The individual relaxation times of the single molecule environments are distributed normally on a logarithmic time scale, confirming that the dynamics in poly(vinyl acetate) is heterogeneous. The width of the distribution of individual relaxation times is essentially independent of temperature. The observed full width at half maximum (FWHM) on a logarithmic time axis is approximately 0.7, corresponding to a factor of about 5-fold, significantly narrower than the dielectric spectrum of the same material with a FWHM of about 2.0 on a logarithmic time axis, corresponding to a factor of about 100-fold. We explain this narrow width as the effect of temporal averaging of single molecule fluorescence signals over numerous environments due to a limited lifetime of the probed heterogeneities, indicating that heterogeneities are dynamic. We determine a loose upper limit for the ratio of the structural relaxation time to the lifetime of the heterogeneities (the rate memory parameter) of Q<80 for the range of investigated temperatures.  相似文献   

12.
The distribution and exchange dynamics of phenol molecules in colloidal dispersions of submicron hollow polymeric capsules is investigated by pulsed field gradient NMR (PFG-NMR). The capsules are prepared by layer-by-layer assembly of polyelectrolyte multilayers on silica particles, followed by dissolution of the silica core. In capsule dispersion, (1)H PFG echo decays of phenol are single exponentials, implying fast exchange of phenol between a free site and a capsule-bound site. However, apparent diffusion coefficients extracted from the echo decays depend on the diffusion time, which is typically not the case for the fast exchange limit. We attribute this to a particular regime, where apparent diffusion coefficients are observed, which arise from the signal of free phenol only but are influenced by exchange with molecules bound to the capsule, which exhibit a very fast spin relaxation. Indeed, relaxation rates of phenol are strongly enhanced in the presence of capsules, indicating binding to the capsule wall rather than encapsulation in the interior. We present a quantitative analysis in terms of a combined diffusion-relaxation model, where exchange times can be determined from diffusion and spin relaxation experiments even in this particular regime, where the bound site acts as a relaxation sink. The result of the analysis yields exchange times between free phenol and phenol bound to the capsule wall, which are on the order of 30 ms and thus slower than the diffusion controlled limit. From bound and free fractions an adsorption isotherm of phenol to the capsule wall is extracted. The binding mechanism and the exchange mechanism are discussed. The introduction of the global analysis of diffusion as well as relaxation echo decays presented here is of large relevance for adsorption dynamics in colloidal systems or other systems, where the standard diffusion echo decay analysis is complicated by rapidly relaxing boundary conditions.  相似文献   

13.
The glass-forming liquids 3-bromopentane (3BP) and 3-methylpentane (3MP) are readily miscible across the entire composition range, although their polarities differ considerably. As noted by Berberian [J. Non-Cryst. Solids 131-133, 48 (1991)], the nearly matching molar volumes makes this binary system appear ideal for probe-sensitized measurements. We have performed a dielectric study of these mixtures in the range of 3BP mole fractions x from 2 x 10(-4) to 0.75. In the limit of low concentrations, x<0.5%, the dielectric loss peak of 3BP is slower by a factor of 2.5 relative to that of 3MP. Additionally, the relaxation behavior of the guest is more exponential than that of the host liquid. We interpret the distinct dynamics of the guest as a result of temporal averaging over the heterogeneous host dynamics, with the exchange time being near the longest structural time constant of the system.  相似文献   

14.
Optically heterodyne-detected optical Kerr effect experiments are applied to study the orientational dynamics of the supercooled ionic organic liquids N-propyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide (PMPIm) and 1-ethyl-3-methylimidazolium tosylate (EMImTOS). The orientational dynamics are complex with relaxation involving several power law decays followed by a final exponential decay. A mode coupling theory (MCT) schematic model, the Sj?gren model, was able to reproduce the PMPIm data very successfully over a wide range of times from 1 ps to hundreds of ns for all temperatures studied. Over the temperature range from room temperature down to the critical temperature Tc of 231 K, the OHD-OKE signal of PMPIm is characterized by the intermediate power law t(-1.00+/-0.04) at short times, a von Schweidler power law t(-0.51+/-0.03) at intermediate times, and a highly temperature-dependent exponential (alpha relaxation) at long times. This form of the decay is identical to the form observed previously for a large number of organic van der Waals liquids. MCT analysis indicates that the theory can explain the experimental data very well for a range of temperatures above Tc, but as might be expected, there are some deviations from the theoretical modeling at temperatures close to Tc. For EMImTOS, the orientational dynamics were studied on the ps time scale in the deeply supercooled region near its glass transition temperature. The orientational relaxation of EMImTOS clearly displays the feature associated with the boson peak at approximately 2 ps, which is the first time domain evidence of the boson peak in ionic organic liquids. Overall, all the dynamical features observed earlier for organic van der Waals liquids using the same experimental technique are also observed for organic ionic liquids.  相似文献   

15.
This paper is concerned with the dynamics of water around a small globular protein. Dipolar second-rank relaxation time and diffusion properties of surface water were computed by extensive molecular dynamics simulations of lysozyme in water which lasted a total of 28 ns. Our results indicate that the rotational relaxation of water in the vicinity of lysozyme is 3-7 times slower than that in the bulk depending on how the hydration shell is defined in the calculation. We have also verified that the dynamics of water translational diffusion in the vicinity of lysozyme have retardations similar to rotational relaxation. This is a common assumption in nuclear magnetic relaxation dispersion (NMRD) studies to derive residence times. In contrast to bulk water dynamics, surface water is in a dispersive diffusion regime or subdiffusion. Very good agreement of dipolar second-rank relaxation time with NMRD estimates is obtained by using appropriate dimensions of the hydration shell. Although our computed second-rank dipolar retardations are independent of the water model, SPC/E describes more realistically the time scale of the water dynamics around lysozyme than does TIP3P.  相似文献   

16.
We report the first measurements of elastic modulus and energy dissipation in Ti-doped and undoped sodium aluminum hydride. It is shown that the chemical reactions that occur by varying the sample temperatures or by aging most sensitively affect the elastic constants, such that the modulus variations allow the time and temperature evolution of decomposition to be monitored. After a well-defined thermal treatment at 436 K, a thermally activated relaxation process appears at 70 K in the kilohertz range, denoting the existence of a new species, likely involving hydrogen, having a very high mobility, that is, 10(3) jumps/s at the peak temperature corresponding to a relaxation rate of about 10(11) s(-1) at room temperature. The activation energy of the process is 0.126 eV and the preexponential factor 7 x 10(-14) s, which is typical of point defect relaxation. The peak is very broad with respect to a single Debye process, indicating strong interaction or/and multiple jumping type of the mobile entity. The present data suggest that the models aiming at interpreting the decomposition reactions and kinetics should take into account the indicated point-defect dynamics and stoichiometry defects.  相似文献   

17.
Using a variety theoretical approaches within the Debye, Davidson–Cole, and Forsman models, and an approach based on the Dissado–Hill theory, dielectric spectra of 2,3-butanediol in the temperature range of 298 to 423 K are analyzed. It is shown that the dielectric spectra of 2,3-butanediole are described by the Davidson–Cole equation, and the βDC parameter depends strongly on temperature. The spectrum of dielectric relaxation of 2,3-butanediol within the Debye theory is presented as the sum of two areas of dispersion, and conclusions are drawn regarding possible mechanisms of dispersion responsible for the obtained fields. The relaxation times of 2,3-butanediol, calculated using different equations describing the nonlinear behavior of relaxation times, are compared. The dipole moments of clusters are obtained for the first time using the Dissado–Hill cluster model, and a preliminary analysis of them is performed.  相似文献   

18.
A method for quantifying millisecond time scale exchange in proteins is presented based on scaling the rate of chemical exchange using a 2D (15)N, (1)H(N) experiment in which (15)N dwell times are separated by short spin-echo pulse trains. Unlike the popular Carr-Purcell-Meiboom-Gill (CPMG) experiment where the effects of a radio frequency field on measured transverse relaxation rates are quantified, the new approach measures peak positions in spectra that shift as the effective exchange time regime is varied. The utility of the method is established through an analysis of data recorded on an exchanging protein-ligand system for which the exchange parameters have been accurately determined using alternative approaches. Computations establish that a combined analysis of CPMG and peak shift profiles extends the time scale that can be studied to include exchanging systems with highly skewed populations and exchange rates as slow as 20 s(-1).  相似文献   

19.
Hydroxyl groups on the lower rim of calix[4]arene form a circular array of four equivalent hydrogen bonds. The rate constants of reversal of the array in the temperature range of 221-304 K were determined by means of the NMR measurements of quaternary (13)C nuclear spin transverse relaxation dependence on the effective radio frequency field. The flip-flop rate constants are in the range of 1.4 x 10(2)-4.2 x 10(4) s(-1), the activation enthalpy is 36.8 kJ/mol, the activation entropy is -36 J mol(-1) K(-1). This process was found uncorrelated with conformational transition cone-inverted cone, which is about thousand times slower. Molecular tumbling of calix[4]arene measured using (13)C spin relaxation was found isotropic with correlation times lying in the range of 0.1-3 ns and with the activation energy of 21 kJ/mol. In order to assess relaxation of (13)C aromatic nuclei, their principal components of chemical shift tensor were calculated using the density functional theory approach.  相似文献   

20.
The ester CD3 stretching modes in a partially deuterated poly(methyl methacrylate) sample have been studied as a function of temperature and bands in the CD stretching region assigned to fundamentals in Fermi resonance with overtone/combination modes. Changes in band parameters (widths, shapes) are observed at specific temperatures. Time correlation functions and their variation with temperature were calculated for the most intense modes observed in this region of the spectrum. The correlation functions were modeled by assuming that there is a fast relaxation process characterized by a single relaxation time that is inhomogeneously broadened by a slower process, also characterized by a single relaxation time. The fast modulation is in the sub picosecond time range, while the slower process has a relaxation time of the order of 1-10 ps. Relaxation times and other parameters are sensitive to transitions observed both below and above the glass transition, as well as at the Tg itself. The high temperature transition corresponds to a liquid-liquid transition observed in other studies and predicted by theory. The lower temperature transition appears to correspond to the Vogel-Fulcher or Kauzmann temperature. Infrared spectroscopy and band shape analysis appear to be a useful probe of these transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号