首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 85 毫秒
1.
This paper deals with large amplitude free flexural vibrations of laminated composite plates using a 9-node Heterosis degenerated isoparametric quadrilateral element, including the effects of transverse shear and rotary inertia. The nonlinear dynamic equations of the plates are formulated in von Karman's sense. Amplitude-frequency relationships are obtained through dynamic response history using the Newmark numerical integration scheme. Detailed numerical results based on various parameters are presented for orthotropic laminated plates with different boundary conditions. The rectangular anti-symmetric cross-ply plates show the softening type of nonlinearity for initial small amplitudes. The displacement amplitudes decrease and nonlinear frequencies increase with the increment of time. Supported by the NNSFC (No. 19672033), the National Key Project on Basic Research and Applied Research (PD9521904) and the Doctoral Training Foundation of Education Commission of China(No. 98000304).  相似文献   

2.
The nonlinear vibrations of a composite laminated cantilever rectangular plate subjected to the in-plane and transversal excitations are investigated in this paper. Based on the Reddy??s third-order plate theory and the von Karman type equations for the geometric nonlinearity, the nonlinear partial differential governing equations of motion for the composite laminated cantilever rectangular plate are established by using the Hamilton??s principle. The Galerkin approach is used to transform the nonlinear partial differential governing equations of motion into a two degree-of-freedom nonlinear system under combined parametric and forcing excitations. The case of foundational parametric resonance and 1:1 internal resonance is taken into account. The method of multiple scales is utilized to obtain the four-dimensional averaged equation. The numerical method is used to find the periodic and chaotic motions of the composite laminated cantilever rectangular plate. It is found that the chaotic responses are sensitive to the changing of the forcing excitations and the damping coefficient. The influence of the forcing excitation and the damping coefficient on the bifurcations and chaotic behaviors of the composite laminated cantilever rectangular plate is investigated numerically. The frequency-response curves of the first-order and the second-order modes show that there exists the soft-spring type characteristic for the first-order and the second-order modes.  相似文献   

3.
This paper presents an analysis on the nonlinear dynamics and multi-pulse chaotic motions of a simply-supported symmetric cross-ply composite laminated rectangular thin plate with the parametric and forcing excitations. Firstly, based on the Reddy’s third-order shear deformation plate theory and the model of the von Karman type geometric nonlinearity, the nonlinear governing partial difirential equations of motion for the composite laminated rectangular thin plate are derived by using the Hamilton’s principle. Then, using the second-order Galerkin discretization, the partial differential governing equations of motion are transformed to nonlinear ordinary differential equations. The case of the primary parametric resonance and 1:1 internal resonance is considered. Four-dimensional averaged equation is obtained by using the method of multiple scales. From the averaged equation obtained here, the theory of normal form is used to give the explicit expressions of normal form. Based on normal form, the energy phase method is utilized to analyze the global bifurcations and multi-pulse chaotic dynamics of the composite laminated rectangular thin plate. The theoretic results obtained above illustrate the existence of the chaos for the Smale horseshoe sense in a parametrical and forcing excited composite laminated thin plate. The chaotic motions of the composite laminated rectangular thin plate are also found by using numerical simulation, which also indicate that there exist different shapes of the multi-pulse chaotic motions for the composite laminated rectangular thin plate.  相似文献   

4.
Minghui Yao  Wei Zhang 《Meccanica》2014,49(2):365-392
This paper investigates the multi-pulse global bifurcations and chaotic dynamics of the high-dimension nonlinear system for a laminated composite piezoelectric rectangular plate by using an extended Melnikov method in the resonant case. Using the von Karman type equations, Reddy’s third-order shear deformation plate theory and Hamilton’s principle, the equations of motion are derived for the laminated composite piezoelectric rectangular plate with combined parametric excitations and transverse excitation. Applying the method of multiple scales and Galerkin’s approach to the partial differential governing equation, the four-dimensional averaged equation is obtained for the case of 1:2 internal resonance and primary parametric resonance. From the averaged equations obtained, the theory of normal form is used to derive the explicit expressions of normal form with a double zero and a pair of pure imaginary eigenvalues. Based on the explicit expressions of normal form, the extended Melnikov method is used for the first time to investigate the Shilnikov type multi-pulse homoclinic bifurcations and chaotic dynamics of the laminated composite piezoelectric rectangular plate. The necessary conditions of the existence for the Shilnikov type multi-pulse chaotic dynamics of the laminated composite piezoelectric rectangular plate are analytically obtained. Numerical simulations also illustrate that the Shilnikov type multi-pulse chaotic motions can also occur in the laminated composite piezoelectric rectangular plate. Overall, both theoretical and numerical studies demonstrate that the chaos in the Smale horseshoe sense exists for the laminated composite piezoelectric rectangular plate.  相似文献   

5.
复合材料层合板1:1参数共振的分岔研究   总被引:3,自引:0,他引:3  
叶敏  吕敬  丁千  张伟 《力学学报》2004,36(1):64-71
针对复合材料对称铺设各向异性矩形层合板的物理模型,在同时考虑了材料、阻尼和几何等非线性因素后,建立了二自由度非线性参数振动系统动力学控制方程,并应用多尺度法求得基本参数共振下的近似解析解,利用数值模拟分析了系统的分岔和混沌运动.指出了伽辽金截断对系统动力学分析的影响,以及系统进入混沌的途径.  相似文献   

6.
Based on the Talreja’s damage model with tensor valued internal state variables, considering the effects of piezoelectricity, geometrical nonlinearity and the constitutive relations of the composite uni-ply plate with matrix cracks, the nonlinear dynamic equations of piezoelectric laminated plates with damage are established and the problems are solved by using the finite difference method. In numerical calculating examples, the nonlinear dynamics responses and the fatigue damage evolution curves of the plates are obtained, and the effects of piezoelectric materials, damage and external load on the nonlinear dynamic response and fatigue damage evolution of the plates are discussed.  相似文献   

7.
A model of piezoelectric rectangular thin plates with the consideration of the coupled thermo-piezoelectric-mechanical effect is established. Based on the von Karman large deflection theory, the nonlinear vibration governing equation is obtained by using Hamilton's principle and the Rayleigh-Ritz method. The harmonic balance method(HBM) is used to analyze the first-order approximate response and obtain the frequency response function. The system shows non-linear phenomena such as hardening nonlinearity, multiple coexistence solutions, and jumps. The effects of the temperature difference,the damping coefficient, the plate thickness, the excited charge, and the mode on the primary resonance response are theoretically analyzed. With the increase in the temperature difference, the corresponding frequency jumping increases, while the resonant amplitude decreases gradually. Finally, numerical verifications are carried out by the Runge-Kutta method, and the results agree very well with the theoretical results.  相似文献   

8.
This paper presents the analysis on the nonlinear dynamics of a deploying orthotropic composite laminated cantilever rectangular plate subjected to the aerodynamic pressures and the in-plane harmonic excitation. The third-order nonlinear piston theory is employed to model the transverse air pressures. Based on Reddy’s third-order shear deformation plate theory and Hamilton’s principle, the nonlinear governing equations of motion are derived for the deploying composite laminated cantilever rectangular plate. The Galerkin method is utilized to discretize the partial differential governing equations to a two-degree-of-freedom nonlinear system. The two-degree-of-freedom nonlinear system is numerically studied to analyze the stability and nonlinear vibrations of the deploying composite laminated cantilever rectangular plate with the change of the realistic parameters. The influences of different parameters on the stability of the deploying composite laminated cantilever rectangular plate are analyzed. The numerical results show that the deploying velocity and damping coefficient have great effects on the amplitudes of the nonlinear vibrations, which may lead to the jumping phenomenon of the amplitudes for first-order and second-order modes. The increase of the damping coefficient can suppress the increase of the amplitudes of the nonlinear vibration.  相似文献   

9.
The governing equation of a Helmholtz resonator considering nonlinear terms of restoring and damping forces is studied. The system is treated by a time multi-scales method, and the softening and hardening behaviors of such resonators are detected as functions of amplitudes. Analytically detected responses of the system are compared with obtained results via direct numerical integration of its equation, with continuation and also with experimental results.  相似文献   

10.
In this paper, the dynamic instability of thin laminated composite plates subjected to harmonic in-plane loading is studied based on nonlinear analysis. The equations of motion of the plate are developed using von Karman-type of plate equation including geometric nonlinearity. The nonlinear large deflection plate equations of motion are solved by using Galerkin’s technique that leads to a system of nonlinear Mathieu-Hill equations. Dynamically unstable regions, and both stable- and unstable-solution amplitudes of the steady-state vibrations are obtained by applying the Bolotin’s method. The nonlinear dynamic stability characteristics of both antisymmetric and symmetric cross-ply laminates with different lamination schemes are examined. A detailed parametric study is conducted to examine and compare the effects of the orthotropy, magnitude of both tensile and compressive longitudinal loads, aspect ratios of the plate including length-to-width and length-to-thickness ratios, and in-plane transverse wave number on the parametric resonance particularly the steady-state vibrations amplitude. The present results show good agreement with that available in the literature.  相似文献   

11.
The vibrations of thin rectangular plate with geometrical nonlinearity are analyzed. The models of plate vibrations with different numbers of degrees-of-freedom are derived. It is deduced that two degrees-of-freedoms are enough to describe low-frequency nonlinear dynamics of plates. Nonlinear normal modes are used to analyze the system dynamics. If vibrations amplitudes are increased, single-mode plate vibrations are transformed into two mode ones. In this case, internal resonance conditions are not observed. Such transformation of vibration is described using Kauderer?CRosenberg nonlinear normal modes.  相似文献   

12.
利用MTS和SHPB装置开展了Kevlar / 环氧树脂层合材料动静态力学性能实验研究,详细讨论了应变率和纤维铺设方式的不同所引起的材料力学行为的差异。根据实验结果提出了一种经验型本构模型,该模型不仅考虑了材料的应变率硬化、损伤软化效应,还通过增强系数的引入描述了纤维铺设方式对材料力学性能的影响。  相似文献   

13.
刘艮  张伟 《力学学报》2019,51(3):912-921
随着材料科学的发展,越来越多的新型材料应用到了工程实践中.在气流激励的作用下,对于以航空航天工程为背景、采用复合材料的板壳结构的非线性动力学问题仍是动力学领域的研究热点.本文研究了复合材料悬臂板在亚音速气流条件下的非线性振动和响应.根据理想不可压缩流体的流动条件和 Kutta--Joukowski升力定理,基于升力面理论,利用涡格法计算了三维有限长平板机翼上的亚音速气动升力.将亚音速气动力施加到复合材料悬臂板上,利用Hamilton原理,考虑Reddy三阶剪切变形理论并引入冯$\cdot$卡门非线性应变位移关系,建立了有限长平板的非线性动力学微分方程.利用有限元方法考察了不同几何参数下层合板悬臂板的固有特性,通过比较不同材料和几何参数的线性系统的固有频率,得到不同比例的内共振关系.利用Galerkin方法将偏微分方程截断为两自由度非线性常微分方程,在这里考虑了1:2的内部共振关系并利用多尺度法进行了摄动分析.对应多个选取参数,得到了频率响应曲线.结果展示了硬化弹簧型行为和跳跃现象.   相似文献   

14.
非线性压电效应下压电层合板的弯曲   总被引:2,自引:1,他引:2  
考虑非线性压电效应,即电致弹性和电致伸缩效应情况下压电层合板的弯曲。从非线性压电方程和几何方程导出了压电层合板合应力、合力矩与应变之间的广义本构关系,这些关系关于电场是非线性的。利用Ritz法和双傅立叶级数得到四边简支对称压电层合板在高电场作用下的非线性解并进行计算。结果表明,只考虑线性压电效应只能适应于作用电场较低或基础层的刚度比压电层的刚度要大得多的情况。  相似文献   

15.
Here, the large amplitude free flexural vibration behavior of symmetrically laminated composite skew plates is investigated using the finite element method. The formulation includes the effects of shear deformation, in-plane and rotary inertia. The geometric non-linearity based on von Kármán's assumptions is introduced. The nonlinear matrix amplitude equation obtained by employing Galerkin's method is solved by direct iteration technique. Time history for the nonlinear free vibration of composite skew plate is also obtained using Newmark's time integration technique to examine the accuracy of matrix amplitude equation. The variation of nonlinear frequency ratios with amplitudes is brought out considering different parameters such as skew angle, fiber orientation and boundary condition.  相似文献   

16.
An approximate solution is presented for the postbuckling problem of cross-ply laminated plates having elastically restrained edges and initial imperfections. By the method of Bubnov-Galerkin the governing nonlinear differential equations are reduced to a system of simultaneous nonlinear ordinary algebraic equations depicting nonlinearity between applied loads and plate lateral deflections. As a numerical example, the case of a square plate made of different materials e.g., isotropic, glass fiber reinforced plastic, and carbon fiber reinforced plastic, under the effect of an initial central deflection and having different edge restraints has been studied.  相似文献   

17.
Nonlinear dynamic responses of a laminated hybrid composite plate subjected to time-dependent pulses are investigated. Dynamic equations of the plate are derived by the use of the virtual work principle. The geometric nonlinearity effects are taken into account with the von Kármán large deflection theory of thin plates. Approximate solutions for a clamped plate are assumed for the space domain. The single term approximation functions are selected by considering the nonlinear static deformation of plate obtained using the finite element method. The Galerkin Method is used to obtain the nonlinear differential equations in the time domain and a MATLAB software code is written to solve nonlinear coupled equations by using the Newmark Method. The results of approximate-numerical analysis are obtained and compared with the finite element results. Transient loading conditions considered include blast, sine, rectangular, and triangular pulses. A parametric study is conducted considering the effects of peak pressure, aspect ratio, fiber orientation and thicknesses.  相似文献   

18.
基于新修正偶应力理论,在对微细观尺度的复合材料层合梁/板进行力学响应计算时,往往采用一系列假设来简化模型。现有文献都全部或部分应用了这些假设,但对这些假设是否会对计算结果造成影响尚未进行充分讨论分析。本文建立了未经简化的新修正偶应力Reddy层合板模型,并对其自由振动进行了分析。通过数值算例的对比,讨论了常用的几个简化假设对微细观复合材料四边简支方板自振频率的影响以及适用范围。算例结果表明,常用的几个简化假设对于微尺度层合薄板自由振动的影响很小,对于厚板的低阶频率影响也很小,但对厚板的高阶频率影响显著。  相似文献   

19.
Analytical studies on the vibration and sound radiation characteristics of an asymmetric laminated rectangular plate are carried out in this paper. Theoretical formulations, in which the effects of thermal environments are taken into account, are derived for the vibration and sound radiation based on both first-order shear deformation plate theory and Rayleigh integral. It is found that the natural frequencies, the resonant amplitudes of vibration response and the sound pressure level decrease with the temperature rising. The natural frequencies of asymmetric plates are smaller than those of symmetric plates and the velocity responses of asymmetric plates are larger than those of symmetric plates.  相似文献   

20.
An electromagnetic nonlinear energy harvester(NEH)based on a rotating system is proposed,of which the host system rotates at a constant speed and vibrates harmonically in the vertical direction.This kind of device exhibits several resonant phenomena due to the combinations of the rotating and the vibration frequencies of the host system as well as the cubic nonlinearity of the NEH.The governing equation of motion for the NEH is derived,and the dynamic responses and output power are investigated with the multiple scale method under the 1:1 primary and 2:1 superharmonic resonant conditions.The effects of system parameters including the nondimensional external frequency,the rotating speed,and the nonlinear stiffness on the responses of free vibration for the system are studied.The results of the primary resonance show that the responses exhibit not only the resonant characteristics but also the nonlinear dynamic characteristics such as the saddle-node(SN)bifurcation.The coexistence of multiple solutions and the varying trends of responses are verified with the direct numerical simulation.Moreover,the effects of system parameters on the average output power are investigated.The results of the analyses on the two resonant conditions indicate that the large power can be harvested in two resonant frequency bands.The effect of resonance on the output power is dominant for the 2:1 superharmonic resonance.Moreover,the results also show that introducing the nonlinearity can increase the value of the output power in large frequency bands and induce the occurence of new frequency bands to harvest the large power.The efficiency of the harvested power could be improved by the combined effects of the resonance as well as the nonlinearity of the NEH device.Suitable parameter conditions could help optimize the power harvesting in design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号