首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a model of gauge theory based on the symmetry group G×SU(2) where G is the gravitational gauge group and SU(2) is the internal group of symmetry. We employ the spacetime of four-dimensional Minkowski, endowed with spherical coordinates, and describe the gauge fields by gauge potentials. The corresponding strength field tensors are calculated and the field equations are written. A solution of these equations is obtained for the case that the gauge potentials have a particular form potentials induces a metric of Schwarzschild type on with spherical symmetry. The solution for the gravitational the gravitational gauge group space.  相似文献   

2.
We use the theory based on the gravitational gauge group G to obtain a spherical symmetric solution of the field equations for the gravitational potentials on a Minkowski space-time. The gauge group G is defined and then we introduce the gauge-covariant derivative Dμ. The strength tensor of the gravitational gauge field is also obtained and a gauge-invariant Lagrangian including the cosmological constant is constructed. A model whose gravitational gauge potentials A^α μ (x) have spherical symmetry, depending only on the radial coordinate τ is considered and an analytical solution of these equations, which induces the Schwarzschild-de-Sitter metric on the gauge group space, is then determined. All the calculations have been performed by GR Tensor II computer algebra package, running on the Maple V platform, along with several routines that we have written for our model.  相似文献   

3.
As is well known the simplest way of formulating the equations for the Yang-Mills gauge fields consists in taking the Lagrangian to be quadratic in the gauge tensor [1 - 5], whereas the application of such an approach to the gravitational field yields equations which are of essentially more complicated structure than the Einstein equations. On the other hand, in the gravitational field theory the Lagrangian can be constructed to be of forms which may be both quadratic and linear in the curvature tensor, whereas the latter possibility is absent in the current gauge field theories. In previous work [6] it has been shown that the Finslerian structure of the space-time gives rise to certain gauge fields provided that the internal symmetries may be regarded as symmetries of a three-dimensional Riemannian space. Continuing this work we show that appropriate equations for these gauge fields can be formulated in both ways, namely on the basis of the quadratic Lagrangian or, if a relevant generalization of the Palatini method is applied, on the basis of a Lagrangian linear in the gauge field strength tensor. The latter possibility proves to result in equations which are similar to the Einstein equations, a distinction being that the Finslerian Cartan curvature tensor rather than the Riemann curvature tensor enters the equations.  相似文献   

4.
Considering the fractal structure of space-time, the scale relativity theory in the topological dimension DT=2 is built. In such a conjecture, the geodesics of this space-time imply the hydrodynamic model of the quantum mechanics. Subsequently, the gauge gravitational field on a fractal space-time is given. Then, the gauge group, the gauge-covariant derivative, the strength tensor of the gauge field, the gauge-invariant Lagrangean, the field equations of the gauge potentials and the gauge energy-momentum tensor are determined. Finally, using this model, a Reissner-Nordström type metric is obtained.  相似文献   

5.
In this paper, we construct a unified covariant formalism for the classical gauge fields in an equiaffine space. The gauge transformation groups are the Lie groups, induced according to the third Lie theorem by the structure constants. As a result of the gauge transformations, one set of geometric objects is replaced by another. It is confirmed that the differential conservation laws in the equiaffine spaces are a result of the equations of the gauge fields. The particular case when the gauge transformation group is a four-parameter group and is abelian is distinguished. This group corresponds to gauge fields that are induced by an energy-momentum tensor and, which, as a result, are called gravitational fields. As a particular case of the equations of the given gravitational fields, we obtain Einstein's equations with the help of a Lagrangian, which is quadratic with respect to the gravitational field intensities. In concluding, we note the possibility of describing gauge fields, corresponding to nongravitational interactions of vector mesons with nonzero rest mass, without invoking the scalar Higgs mesons. This possibility appears both as a result of the generalization of the Yang-Mills covariant derivative and as a result of including gravitational interactions in the general gauge field formalism.Translated from Izvestiya Vysshykh Uchebnykh Zavedenii, Fizika, No. 12, 47–51, December, 1981.  相似文献   

6.
7.
It is shown that the gravitational field equations in free space have a similar form to the free Yang-Mills field equations, where the group SL (2, C) replaces the group SU(2). The Ricci rotation coefficients take the role of the Yang-Mills like potentials, whereas the Riemann tensor takes the role of the gauge fields.  相似文献   

8.
The Lagrangian based theory of the gravitational field and its sources at the arbitrary background space-time is developed. The equations of motion and the energy-momentum tensor of the gravitational field are derived by applying the variational principle. The gauge symmetries of the theory and the associated conservation laws are investigated. Some properties of the energymomentum tensor of the gravitational field are described in detail and the examples of its application are given. The desire to have the total energymomentum tensor as a source for the linear part of the gravitational field leads to the universal coupling of gravity with other fields (as well as to the self-interaction) and finally to the Einstein theory.  相似文献   

9.
In the context of a gauge theory for the translation group, a conserved energy-momentum gauge current for the gravitational field is obtained. It is a true spacetime and gauge tensor, and transforms covariantly under global Lorentz transformations. By rewriting the gauge gravitational field equation in a purely spacetime form, it becomes the teleparallel equivalent of Einstein's equation, and the gauge current reduces to the Moller's canonical energy-momentum density of the gravitational field.  相似文献   

10.
11.
This paper treats the formulation of the gravitational field variables and the equations obeyed by them at spatial infinity. The variables consist of a three-dimensional tensor and a scalar, which satisfy separate field equations, which in turn can be obtained from two distinct Lagrangians. Aside from Lorentz rotations, the symmetry operations include an Abelian gauge group and an Abelian Lie group, leading to a number of conservation laws and to differential identities between the field equations.This work was partially supported by the National Science Foundation through Grant PHY-8541793 to Syracuse University.  相似文献   

12.
13.
Homogeneous scaling of the group space of the Poincaré group,P 10, is shown to induce scalings of all geometric quantities associated with the local action ofP 10. The field equations for both the translation and the Lorentz rotation compensating fields reduce toO(1) equations if the scaling parameter is set equal to the general relativistic gravitational coupling constant 8Gc –4. Standard expansions of all field variables in power series in the scaling parameter give the following results. The zeroth-order field equations are exactly the classical field equations for matter fields on Minkowski space subject to local action of an internal symmetry group (classical gauge theory). The expansion process is shown to breakP 10-gauge covariance of the theory, and hence solving the zeroth-order field equations imposes an implicit system ofP 10-gauge conditions. Explicit systems of field equations are obtained for the first- and higher-order approximations. The first-order translation field equations are driven by the momentum-energy tensor of the matter and internal compensating fields in the zeroth order (classical gauge theory), while the first-order Lorentz rotation field equations are driven by the spin currents of the same classical gauge theory. Field equations for the first-order gravitational corrections to the matter fields and the gauge fields for the internal symmetry group are obtained. Direct Poincaré gauge theory is thus shown to satisfy the first two of the three-part acid test of any unified field theory. Satisfaction of the third part of the test, at least for finite neighborhoods, seems probable.  相似文献   

14.
The minimal relativistic model of gravitation on the basis of the gauge-invariant theory of the linear scalar massless field is suggested. The principle of the multiplicative inclusion of gravitational interaction, the requirements being that the simplicity and invariance of the theory under the allowed (gauge) transformation of potential Ф → Ф′ = Ф + const as the basis of the approach, is used. A system of gauge-invariant gravitational field and matter equations is obtained and an energy-momentum tensor with a positively defined density of the field energy is constructed. The exact solutions to equations for the central static field and for fields of spherically symmetric and plane gravitational waves in the free space and in the material media are obtained.  相似文献   

15.
《Physics letters. [Part B]》1988,202(1):105-109
It is shown perturbatively that the gravitational anomaly of the chiral bispinor field is twice as large as that of the self-dual antisymmetric tensor gauge field; in the previous literature they were supposed to agree with each other. This implies that a naive application of Fujikawa's path integral method leads to a wrong result for the anomaly of the self-dual antisymmetric tensor gauge field.  相似文献   

16.
In General Relativity, the graviton interacts in three-graviton vertex with a tensor that is not the energy-momentum tensor of the gravitational field. We consider the possibility that the graviton interacts with the definite gravitational energy-momentum tensor that we previously found in the G 2 approximation. This tensor in a gauge, where nonphysical degrees of freedom do not contribute, is remarkable, because it gives positive gravitational energy density for the Newtonian center in the same manner as the electromagnetic energy-momentum tensor does for the Coulomb center. We show that the assumed three-graviton vertex does not lead to contradiction with the precession of Mercury’s perihelion. In the S-matrix approach used here, the external gravitational field has only a subsidiary role, similar to the external field in quantum electrodynamics. This approach with the assumed vertex leads to the gravitational field that cannot be obtained from a consistent gravity equation.  相似文献   

17.
The prediction of general relativity on the gravitational collapse of matter ending in a point is viewed as an absurdity of the kind to be expected in any consistent physical theory due to ultimate conflicts of the axioms of geometry with the properties of physical objects. The necessity to introduce a probability interpretation for the solution of partial differential equations in space time for quantum theory points to similar roots. It is pointed out that quantum theory in the very small is not going to eliminate the problem, but macroscopic quantum effects in the large, modifying the properties of the horizon, may achieve it. Solutions such as wormholes allow as much empirical evidence as any science fiction. The present approach considers successive modifications of the field equations and equations of motion of gravitational theory by admixture of terms with higher derivatives. The rigorous application of a gauge principle combines Einstein's equations with the tensor analog of Maxwell's equations which are of third order for the metric. It is speculated that the natural presence of torsion in such a gauge theory is related to matter sources.  相似文献   

18.
In this review paper, we discuss how gravity and spin can be obtained as the realization of the local Conformal-Affine group of symmetry transformations. In particular, we show how gravitation is a gauge theory which can be obtained starting from some local invariance as the Poincaré local symmetry. We review previous results where the inhomogeneous connection coefficients, transforming under the Lorentz group, give rise to gravitational gauge potentials which can be used to define covariant derivatives accommodating minimal couplings of matter, gauge fields (and then spin connections). After we show, in a self-contained approach, how the tetrads and the Lorentz group can be used to induce the spacetime metric and then the Invariance Induced Gravity can be directly obtained both in holonomic and anholonomic pictures. Besides, we show how tensor valued connection forms act as auxiliary dynamical fields associated with the dilation, special conformal and deformation (shear) degrees of freedom, inherent to the bundle manifold. As a result, this allows to determine the bundle curvature of the theory and then to construct boundary topological invariants which give rise to a prototype (source free) gravitational Lagrangian. Finally, the Bianchi identities, the covariant field equations and the gauge currents are obtained determining completely the dynamics.  相似文献   

19.
Einstein suggested that a unified field theorybe constructed by replacing the diffeomorphisms (thecoordinate transformations of general relativity) withsome larger group. We have constructed a theory that unifies the gravitational and electroweakfields by replacing the diffeomorphisms with the largestgroup of coordinate transformations under whichconservation laws are covariant statements. Thisreplacement leads to a theory with field equations whichimply the validity of the Einstein equations of generalrelativity, with a stress-energy tensor that is justwhat one expects for the electroweak field andassociated currents. The electroweak field appears as aconsequence of the field equations (rather than as a"compensating field" introduced to secure gaugeinvariance). There is no need for symmetry breaking toaccommodate mass, because the U(1) × SU(2) gaugesymmetry is approximate from the outset. Thegravitational field is described by the space-timemetric, as in general relativity. The electroweak fieldis described by the "mixed symmetry" part of the Riccirotation coefficients. The gauge symmetry-breakingquantity is a vector formed by contracting theLevi-Civita symbol with the totally antisymmetric partof the Ricci rotation coefficients.  相似文献   

20.
Yue-Liang Wu 《中国物理C(英文版)》2017,41(10):103106-103106
The relativistic Dirac equation in four-dimensional spacetime reveals a coherent relation between the dimensions of spacetime and the degrees of freedom of fermionic spinors. A massless Dirac fermion generates new symmetries corresponding to chirality spin and charge spin as well as conformal scaling transformations. With the introduction of intrinsic W-parity, a massless Dirac fermion can be treated as a Majorana-type or Weyl-type spinor in a six-dimensional spacetime that reflects the intrinsic quantum numbers of chirality spin. A generalized Dirac equation is obtained in the six-dimensional spacetime with a maximal symmetry. Based on the framework of gravitational quantum field theory proposed in Ref. [1] with the postulate of gauge invariance and coordinate independence, we arrive at a maximally symmetric gravitational gauge field theory for the massless Dirac fermion in six-dimensional spacetime. Such a theory is governed by the local spin gauge symmetry SP(1,5) and the global Poincar′e symmetry P(1,5)= SO(1,5) P~(1,5) as well as the charge spin gauge symmetry SU(2). The theory leads to the prediction of doubly electrically charged bosons. A scalar field and conformal scaling gauge field are introduced to maintain both global and local conformal scaling symmetries. A generalized gravitational Dirac equation for the massless Dirac fermion is derived in the six-dimensional spacetime. The equations of motion for gauge fields are obtained with conserved currents in the presence of gravitational effects. The dynamics of the gauge-type gravifield as a Goldstone-like boson is shown to be governed by a conserved energy-momentum tensor, and its symmetric part provides a generalized Einstein equation of gravity. An alternative geometrical symmetry breaking mechanism for the mass generation of Dirac fermions is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号