首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In the present work we have studied the characteristics of propylene glycol alginates (PGA) adsorption at the air–water interface and the viscoelastic properties of the films in relation to its foaming properties. To evaluate the effect of the degree of PGA esterification and viscosity, different commercial samples were studied—Kelcoloid O (KO), Kelcoloid LVF (KLVF) and Manucol ester (MAN). The temperature (20 °C) and pH (7.0) were maintained constant. For time-dependent surface pressure measurements and surface dilatational properties of adsorbed PGA at the air–water interface an automatic drop tensiometer was used. The foam was generated by whipping and then the foam capacity and stability was determined. The results reveal a significant interfacial activity for PGA due to the hydrophobic character of the propylene glycol groups. The kinetics of adsorption at the air–water interface can be monitored by the diffusion and penetration of PGA at the interface. The adsorbed PGA film showed a high viscoelasticity. The surface dilatational modulus depends on the PGA and its concentration in the aqueous phase. Foam capacity of PGA solutions increased in the order KO > MAN > KLVF, which followed the increase in surface pressure and the decrease in the viscosities of PGA solutions. The stability of PGA foams monitored by the drainage rate and collapse time follows the order MAN > KLVF > KO. The foam stability depends on the combined effect of molecular weight/degree of esterification of PGA, solution viscosity and viscoelasticity of the adsorbed PGA film.  相似文献   

2.
The surface activity of the poly–[block (ethylene oxide)]–poly [block (propylene oxide)]–poly [block (ethylene oxide)] copolymers (EO)x–(PO)y–(EO)x adsorbed together with dihexadecyl phosphoric acid (DHP), a synthetic phospholipid, is analyzed from their surface pressure and surface potential isotherms. The block copolymers of (EO)x–(PO)y–(EO)x with variable molecular weight (1100–14 000) were dissolved in the subphase for DHP monolayers. The concentration of the copolymers within the aqueous subphase were selected to render an initial surface tension of 60 mN/m. The simultaneous adsorption of the copolymer and DHP is attested by the observation of a liquid expanded state at large areas, absent for pure DHP monolayers. Above some critical surface pressure all copolymers cited above are expelled from the interface. The surface potential isotherms, which give information on the component of the molecular dipole moment normal to the plane of the monolayer, are interpreted in terms of changes in the copolymer conformation as well as in terms of the copolymer desorption from the air–liquid interface. For an equal hydrophobic/hydrophilic ratio, the size of the chains or molecular weight is decisive in the mechanism of the copolymer expulsion from the air–liquid interface.  相似文献   

3.
We report on the effect of commercially important polysaccharides (maltodextrins with variable dextrose equivalent (Paselli SA-2, MD-6 and MD-10) on the surface activity at the air–water interface of small-molecule surfactants (sms), possessing different hydrophobic–lipophilic balance ((SSL (Na+), the main component is a sodium salt of stearol–lactoyl lactic acid, and PGE (080), polyglycerol ester of C18 fatty acid), and widely used in food products. A marked change of the surface activity of sms was found in the presence of maltodextrins by tensiometry. The combined data of laser multiangle light scattering and mixing calorimetry have suggested that this result is governed by specific complex formation between maltodextrins and sms in aqueous medium. Measurements have been made of the molar mass, the second virial coefficient and the enthalpy of intermolecular interactions in aqueous solutions. The implication of a degree of polymerization of maltodextrins in this phenomenon was shown. The interrelation between the molecular parameters of the formed complexes and their surface activity at the air–water interface has been revealed and discussed.  相似文献   

4.
Solution properties of aqueous film-forming foam (AFFF) formulations containing different xanthan gum contents were investigated first by varying the mass fraction of xanthan gum in the range of 0.1–0.5%. Foam properties and fire-extinguishing performance of the AFFF formulations were then evaluated. Results indicated that xanthan gum content slightly affected surface tension of foam solutions. However, xanthan gum significantly affected viscosity of AFFF concentrates. Foaming of the AFFF formulations was hardly affected by xanthan gum, but foam stability of the compounds was obviously enhanced with the addition of xanthan gum. Optimal xanthan gum content was determined as 0.3%, which resulted in the shortest 90% control time and fire extinguishment time. Burnback time of foams increased with the addition of xanthan gum because of the enhanced foam stability.  相似文献   

5.
Hen egg yolk is largely used as food ingredient notably because of its exceptional emulsifying properties. Low-density lipoproteins (LDL) are the main egg yolk constituent. LDL and particularly apoLDL are thought to control largely emulsifying properties of egg yolk-based products. Nevertheless, few studies have concerned the interfacial behaviour of these lipoproteins at the oil–water interface and nothing has been published about the air–water interface. Controversies still remain about LDL adsorption mechanism at the oil–water interface even if a widely spread theory suggests their breaking at the interface, allowing then their constituents to spread. The Langmuir film balance and atomic force microscopy (AFM) were used in this study in the aim to characterise LDL surface behaviour in dynamic conditions at the air–water interface. The understanding of LDL adsorption mechanism and surface organisation at the air–water interface should provide useful information about LDL behaviour at the oil–water interface. LDL and lipids extracted from LDL—neutral lipids, phospholipids and total lipids (mixture of the two previous species)—were spread at the air–water interface to clarify the role of each constituent in the lipoprotein film. Results clearly show that LDL are disrupted at the interface to release notably neutral lipids from the lipoprotein core, enabling then their spreading. Each lipid class has been identified on the LDL film isotherm and seems to behave independently and individually at the interface within the lipoprotein film.  相似文献   

6.
The effect of xanthan on foam formation and on physical mechanisms of destabilization involved in the breakdown of foams made from native and denatured soy protein at neutral pH was studied by a bubbling and a whipping-rheological method. Parameters describing foam formation and destabilization by liquid drainage and disproportionation obtained by the two methods showed that the addition of xanthan was accompanied by delayed rates of drainage and disproportionation and reduced foam height decay (collapse). Drainage showed the largest reduction, mainly because of the increased bulk viscosity. In the absence of xanthan, protein denaturation enhanced foam formation and stability against drainage and disproportionation, but increased the collapse of foams. In the presence of xanthan, differences in foam formation and drainage/disproportionation stability between native and denatured soy protein were greatly reduced. However, differences in foam collapse were greatly enhanced. The increased stability of foams in the presence of xanthan could not be explained purely in terms of increased aqueous phase viscosity. More specific interactions of xanthan and soy proteins at the air-water interface influencing the surface rheology, and the protein composition and aggregation, are involved.  相似文献   

7.
The displacement efficiency of welan gum on enhanced heavy oil recovery has been investigated by comparing that of xanthan gum which is commonly used for polymer flooding, and it is found that the displacement efficiency of biopolymer welan gum is higher (>7.0 % at the normal permeability) than that of xanthan gum. In‐depth rheological investigations show that both storage modulus and loss modulus of welan gum solution are higher than those of xanthan gum solutions at the same concentration, temperature and salinity. The higher displacement efficiency for enhanced heavy oil recovery by welan gum is mainly caused by its stronger ability to form aggregates. Although the molecular weight of welan gum is lower than that of xanthan gum, the aggregates of welan gum molecules help to improve the sweep efficiency. It is proposed that welan gum improves oil recovery by drawing and dragging on the residual oils which is derived from the interlinked network structures formed by the adjacent double helices in the arrangement of the zipper model. The intermolecular structures formed by zipper model are stable in high temperature and high salinity condition. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Surface pressure (π)–area (A) isotherms of hydrophobically modified polyethylene oxide (HEUR) at the air–water interface was examined. Conformational transitions between pancake, mushroom, and brush states of the hydrophilic backbone influence the intermolecular interaction between the hydrophobic chains. We choose relatively long (18 carbons) hydrophobic ends, which have large hydrophobic interactions, and investigate the main chain effect by change in the length of the hydrophilic PEO chain. At high surface concentration region, the temperature coefficient of surface pressure, dπ/dT, was larger by increasing the portion of the hydrophobicity. This indicates an increase in surface energy and a decrease in surface enthalpy at high surface concentrations. As alkyl chains on both sides of HEURs are anchored at the air–water interface, restriction caused by the alkyl chain would be smaller for the long PEO chain, but the larger for the short PEO chain length.  相似文献   

9.
The primary role of lung surfactant is to reduce surface tension at the air–liquid interface of alveoli during respiration. Axisymmetric drop shape analysis (ADSA) was used to study the effect of poly(ethylene glycol) (PEG) on the rate of surface film formation of a bovine lipid extract surfactant (BLES), a therapeutic lung surfactant preparation. PEG of molecular weights 3350; 8000; 10,000; 35,000; and 300,000 in combination with a BLES mixture of 0.5 mg/mL was studied. The adsorption rate of BLES alone at 0.5 mg/mL was much slower than that of a natural lung surfactant at the same concentration; more than 200 s are required to reach the equilibrium surface tension of 25 mJ/m2. PEG, while not surface active itself, enhances the adsorption of BLES to an extent depending on its concentration and molecular weight. These findings suggest that depletion attraction induced by higher molecular weight PEG (in the range of 8000 to 35,000) may be responsible for increasing the adsorption rate of BLES at low concentration. The results provide a basis for using PEG as an additive to BLES to reduce its required concentration in clinical treatment, thus reducing the cost for surfactant replacement therapy.  相似文献   

10.
We demonstrate that nanoscale aggregates similar to those formed via amphiphilic block copolymer self-assembly at the air-water interface, including strands, networks, and continents, can be generated by the simple spreading of PS homopolymer solutions on water. Two different PS homopolymers of different molecular weight (PS-405k, M(n) = 405?000 g mol(-1) and PS-33k, M(n) = 33?000 g mol(-1)) are spread at the air-water interface at various spreading concentrations ranging from 0.25 to 3.0 mg/mL. Aggregate formation is driven by PS dewetting from water as the spreading solvent evaporates. We propose that a high spreading concentration or a high molecular weight lead to chain entanglements that restrict macromolecular mobility in the solution, enabling the kinetic trapping of nanostructures associated with early and intermediate stages of PS dewetting. Comparison of PS-405k with a mainly hydrophobic PS-b-PEO block copolymer of similar molecular weight (PSEO-392k, M(n) = 392?000 g mol(-1), 2.0 wt % PEO) allows the effect of a relatively short surface active block on aggregate formation to be investigated. We show that whereas the PEO block is not a required component for the formation of strands and other nonglobular aggregates, it does increase the number of these aggregates at a given spreading concentration and decreases the minimum spreading concentration at which these aggregates are observed, along with decreasing the dimensions and polydispersity of specific surface features. The results provide supporting evidence for the role of PS dewetting in the generation of multiple PS-b-PEO aggregate morphologies at the air-water interface, as originally described in earlier paper from our group.  相似文献   

11.
Phase behavior and surface tension of aqueous solutions of fluorinated random copolymers [perfluoroalkylacrylate]–[poly(ethyleneoxide)methacrylate], [CmRf-acrylate]-[EOn-methacrylate] with fluroalkyl carbon number m = 8, 6, 4, 2 and number of ethyleneoxide unit, n = 9 and 4.5 were investigated as a function of composition and different combinations of m and n. Isotropic solutions are formed at lower temperatures over wide concentration range of copolymer but at higher temperature phase separation occurs. The cloud point of copolymer decreases with decreasing n as well as m, and also with decreasing the number of poly(ethyleneoxide)methacrylate chain per perfluorinatedalkylacrylate chain, suggesting that the copolymers become more hydrophobic on decreasing m and n. Equilibrium and dynamic surface tension measurements show that copolymers become increasingly surface active as m as well as n decrease but the adsorption at the air–water interface is very slow due to bulkiness of the molecules. No clear evidence of the formation of micellar aggregates could be obtained from surface tension–composition curves.  相似文献   

12.
The measurements of the interfacial tension at the air/aqueous subphase interface as the function of pH were performed. The interfacial tension of the air–aqueous subphase interface was divided into contributions of individuals. A simple model of the influence of pH on the phosphatidylcholine monolayer at the air/hydrophobic chains of phosphatidylcholine is presented. The contributions of additive phosphatidylcholine forms (both interfacial tension values and molecular area values) depend on pH. The interfacial tension values and the molecular areas values for LH+, LOH forms of phosphatidylcholine were calculated. The assumed model was verified experimentally.  相似文献   

13.
The thermodynamic properties of monolayers of double chain cationic lipids DOTAP at the air–water interface have been investigated by means of surface pressure and surface potential measurements. We studied the interfacial properties of the film in the liquid-expanded regime during the isothermal compression in the presence of oppositely charged linear polyions (poly(acrylate)sodium salt, [NaPA]) of different molecular weights. The influence of the ionic character of the aqueous subphase on the polyion adsorption has been studied in different environmental conditions, considering different subphase compositions, ranging from a polyion solution at different concentrations to a salty polyion solution, containing different amount of simple added salt [NaCl]. The data are compared to the ones when only NaCl salt is present in the subphase. The results have been analyzed according to an osmotic-type equation of state and the characteristic parameter associated with the water activity has been evaluated as a function the different molecular weight polyion content. The influence of the simple salt in the adsorption process has been discussed in the light of current scaling theories of polyelectrolyte solutions and the critical salt concentrations inducing a polyion desorption in the different experimental conditions investigated have been estimated.  相似文献   

14.
Whey protein isolate was heat-treated at 85 degrees C for 15 min at pH ranging from 6.0 to 7.0 in the presence of NaCl in order to generate the highest possible amount of soluble aggregates before insolubility occurred. These whey protein soluble aggregates were characterized for composition, hydrodynamic diameter, apparent molecular weight, zeta-potential, surface hydrophobicity index, activated thiol group content, and microstructure. The adsorption kinetics and rheological properties (E', etad) of these soluble aggregates were probed at the air/water interface. In addition, the gas permeability of a single bubble stabilized by the whey protein soluble aggregates was determined. Finally, the foaming and foam-stabilizing properties of these aggregates were measured. The amount of whey protein soluble aggregates after heat treatment was increased from 75% to 95% from pH 6.0 to pH 7.0 by addition of 5 mM to 120 mM NaCl, respectively. These soluble aggregates involved major whey protein fractions and exhibited a maximum of activated thiol group content at pH > 6.6. The hydrodynamic radius and the surface hydrophobicity index of the soluble aggregates increased from pH 6.0 to 7.0, but the molecular weight and zeta-potential decreased. This loss of apparent density was clearly confirmed by microscopy as the soluble aggregates shifted from a spherical/compact structure at pH 6.0 to a more fibrillar/elongated structure at pH 7.0. Surface adsorption was faster for soluble aggregates formed at pH 6.8 and 7.0 in the presence of 100 and 120 mM NaCl, respectively. However, interfacial elasticity and viscosity measured at 0.01 Hz were similar from pH 6.0 to 7.0. Single bubble gas permeability significantly decreased for aggregates generated at pH > 6.6. Furthermore, these aggregates exhibited the highest foamability and foam liquid stability. Air bubble size within the foam was the lowest at pH 7.0. The coarsening exponent, alpha, fell within predicted values of 1/3 and 1/2, except for very dry foams where it was 1/5.  相似文献   

15.
Aggregate formation in poly(3‐hexylthiophene) depends on molecular weight, solvent, and synthetic method. The interplay of these parameters thus largely controls device performance. In order to obtain a quantitative understanding on how these factors control the resulting electronic properties of P3HT, we measured absorption in solution and in thin films as well as the resulting field effect mobility in transistors. By a detailed analysis of the absorption spectra, we deduce the fraction of aggregates formed, the excitonic coupling within the aggregates, and the conjugation length within the aggregates, all as a function of solvent quality for molecular weights from 5 to 19 kDa. From this, we infer in which structure the aggregated chains pack. Although the 5 kDa samples form straight chains, the 11 and 19 kDa chains are kinked or folded, with conjugation lengths that increase as the solvent quality reduces. There is a maximum fraction of aggregated chains (about 55 ± 5%) that can be obtained, even for poor solvent quality. We show that inducing aggregation in solution leads to control of aggregate properties in thin films. As expected, the field‐effect mobility correlates with the propensity to aggregation. Correspondingly, we find that a well‐defined synthetic approach, tailored to give a narrow molecular weight distribution, is needed to obtain high field effect mobilities of up to 0.01 cm2/Vs for low molecular weight samples (=11 kDa), while the influence of synthetic method is negligible for samples of higher molecular weight, if low molecular weight fractions are removed by extraction. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

16.
This paper presents a study of the effect of sucrose on the molecular parameters and thermodynamic properties in a bulk aqueous medium and at the air–water interface for two proteins differing both in nature and structure, that is Na-caseinate and ovalbumin. To get more insight into the molecular nature of the effect of sucrose, mixing calorimetry, light scattering and tensiometry measurements have been made under different pHs (7.0 and 5.5) and temperatures (20–55°C) at an ionic strength of 0.005 mol dm−3. Combined temperature dependencies of light scattering and mixing calorimetry testify to hydrogen bonding (sucrose-protein and/or sucrose-water) as being the primary basis of the effect of sucrose on the molecular and thermodynamic properties of the proteins in the bulk and at interface of an aqueous medium. At pH 7.0, in the case of ovalbumin, the interaction with sucrose causes an increase in the protein hydrophilicity in the bulk aqueous medium followed by a decrease in the protein surface activity, whilst for Na-caseinate, there is an increase in the protein hydrophobicity due to Na-caseinate micelle dissociation and, consequently, to an increase in the protein surface activity. Lowering the pH to 5.5, accompanied by a strengthening of the competition between less charged proteins and sucrose for water molecules, induces a rise in the protein hydrophobic aggregation in the bulk. The special features of the latter process are probably mainly responsible for the changes in the surface activity of the proteins under influence of sucrose at pH 5.5.  相似文献   

17.
The structure and the dynamic organization of a mixed Langmuir film of glucose oxidase and stearylamine at the air–water interface have been studied. The film has been first characterized at the air–water interface by surface pressure/area isotherms. The dynamics of the mixed film was studied by following the evolution of the film area at a constant pressure and the evolution of the pressure at a constant area. After transfer of the films on solid substrates, the chemical composition of the mixed film has been quantified by UV–vis and IR spectroscopies. These characterizations were carried out in order to study the incorporation of glucose oxidase into the stearylamine film, and its influence on the structural evolution of the film. From these results, the dynamic organization of this mixed film may be described. For short times, glucose oxidase molecules interact with stearylamine molecules in solution or at the interface; these interactions would lead to the formation of a complex between stearylamine and glucose oxidase molecules. For long times (at least 3 h), a homogeneous mixed film constituted essentially of this complex is obtained at the air–water interface. A detailed analysis by atomic force microscopy allowed us to support this model and the existence of the glucose oxidase/stearylamine complex.  相似文献   

18.
Functional properties of native and modified (through induced autolysis) pea (Pisum sativum L.) and broad bean (Vicia faba L.) protein derivatives are studied. In specific, protein solubility and behavior at the air–water interface through surface pressure measurements are investigated. Furthermore the ability of the protein products to act as emulsifying agents and to stabilize emulsions is studied through oil droplet size distribution measurements and by the protein adsorbed at the oil–water interface. The data reveal that the ability of the proteins to act as surfactants and build up a rigid film around the oil droplets, mainly depends on their suitable molecular configuration and structure. Hydrolysis did not promote the functionality of the legume proteins. Broad bean exhibited better functionality than pea, before and after hydrolysis. Some comparisons were also made with lupin (Lupinus albus L.) protein isolate.  相似文献   

19.
The interaction of adsorbed poly(ethylene oxide) (PEO) mushrooms with clean silica-ethylammonium nitrate (EAN, a protic ionic liquid) interfaces is investigated using atomic force microscopy (AFM). 10 kDa, 35 kDa and 100 kDa PEO was used to prepare polymer layers ex situ by drop casting from 0.01 wt% EAN solutions. AFM tapping mode measurements of dried, solvent free PEO layers revealed oblate structures, which increase in size with molecular weight. Colloid probe force curve measurements of these surfaces re-solvated with EAN suggest PEO adopts a mushroom morphology, with the interaction range (layer thickness) increasing with molecular weight. Attractive forces on approach and single strand stretching forces on retraction show PEO has a strong affinity for the silica-EAN interface. The single polymer strand stretching forces follow the freely jointed chain model under good solvent conditions. Contour lengths close to the theoretical limits of 120 nm for the 10 kDa, 290 nm for the 35 kDa and 1240 nm for the 100 kDa PEO samples are observed, while fitted Kuhn lengths are small, at 0.14 nm.  相似文献   

20.
The behaviour of component PP3, a bovine milk protein with emulsifying properties, was investigated at the air–water interface and in a lipidic environment using the monolayer technique. The amphipathic 119–135 C-terminal fragment of PP3 was also tested since we proposed, on the basis of structural analysis, that this region is probably responsible for the surface-active properties of the protein. This hypothesis was confirmed by the tensiometric measurements at the air–water interface in which the addition of the C-terminal peptide increased the surface pressure with a similar amplitude as the whole protein. Penetration measurements into lipidic monolayers indicated that the insertion of component PP3 and its C-terminal peptide is the highest with anionic phospholipids in a gel state. Moreover, the electrostatic attractions provided by anionic phospholipids are essential for the peptide interaction. We also showed by Fourier transform infrared spectra study, that the peptide displays a β-type conformational state in aqueous solution and in the presence of solvant or anionic phospholipid (DPPG). In contrast, the protein adopts in aqueous solution an helical conformation which remains the dominant conformational state in the presence of DPPG although the apparition of β-structure is detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号