首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
该文给出:对于偶数m≥4当n→ ∞时 r(Wm,Kn)≤l(1+o(1))C1(m) (n/logn ) (2m-2)/(m-2)对于奇数m≥5当n→∞时r(Wm,Kn)≤(1+o(1))C2(m) (n2m/m+1/log n)(m+1)/(m-1) .特别地,C2(5)=12. 以及 c(n/logn)5/2≤r(K4,Kn)≤ (1+o(1)) n3/(logn)2.此外,该文还讨论了轮和完全图的 Ramsey 数的一些推广.  相似文献   

2.
杨守志  彭立中 《中国科学A辑》2005,35(12):1347-1360
基于任意给定的伸缩因子为a的正交多尺度函数, 给出一种提升其逼近阶的算法. 设Φ(x)=[φ1(x),x)=[φ2(x),…,φr(x)]T是伸缩因子为a,逼近阶为m的正交多尺度函数,则可以构造出一个重数为r+s,逼近阶为m+L(LÎZ+)的新正交多尺度函数Φnew(x)=ΦT(x),φr+1(x), φr+2(x),…, φr+s(x)T. 换言之, 通过增加多尺度函数的重数提升了它的逼近阶. 另外, 讨论了一个特殊情形:如果所给的正交多尺度函数Φ(x)=[φ1(x),φ2(x),…,φr(x)] T是对称的,则新构造的多尺度函数 Φnew(x)不仅能提升其逼近阶, 而且还保持对称性. 给出了若干构造算例.  相似文献   

3.
在该文中, 令E表示一个迭代函数系统(X,T1,…, Tm). 的吸引子. 定义连续自映射 f : E→E为f(x)=T-1j(x), x∈ Tj(E), j=1, …, m . 给定Given ψ ∈CR(E), 令 Kψ(δ, n = sup{∣∑n-1k=0[ψ(f kx)-ψ(f ky)]|:y ∈ Bx (δ, n)}, 这里Bx(δ, n) 表示Bowen球. 取一个扩张常数 ε, 记Kψ=supn Kψ(ε, n) , 定义ν(E)={ψ : Kψ < ∞}. 对f : E → E, 作为Ruelle的一个定理[3, 定理2.1]的一个应用, 我们证明每个ψ ∈ν(E)具有惟一的平衡态. 此结果推广了文献[12]中的主要结果.  相似文献   

4.
一类矩阵方程的广义Hermite问题   总被引:1,自引:0,他引:1       下载免费PDF全文
该文主要解决了如下两个问题 问题I 已知矩阵 M∈ Cn×e, A∈Cn×m, B∈ Cm×m, 求 X∈ HCM,n使得 AHXA=B, 其中 HCM,n={ X∈ Cn×n}|αH(X-XH)=0, for all α∈ C(M) }. 问题II 任意给定矩阵 X* ∈Cn×n, 求 $\hat{X}\in H_E$ 使得 ||\hat{X}-X*||=\min\limits_{X∈ HE}||X-X*||, 这里 HE 为问题I的解集. 利用广义奇异值分解定理,得到了问题I的可解条件及其通解表达式, 获得了问题II的解,并进行了相应的数值计算.  相似文献   

5.
定义了L*-逆半群, 并引入了半群左圈积的概念. 证明了半群S是一个L*-逆半群, 当且仅当S是一个型A半群Γ和一个左正则带B连同结构映射φ的左圈积Bâφ. 这一结果的一个直接推论是关于左逆半群结构的著名Yamada定理. 利用半群的左圈积, 给出了一个非平凡的L*-逆半群的例子.  相似文献   

6.
A是Woronowicz C*代数, G是作用于其上的离散群, 主要证明了它们的交叉积代数αG的正则表示和协变表示都对应于乘法酉算子,同时证明了正则协变的C*代数也是一个对应乘法酉算子的Woronowicz C*代数,最后给出了C(SUq(2)×αZ对应的乘法酉算子的一个明确表示.  相似文献   

7.
考虑形如s1T(S1S1T)ms1, s1T(SST)ms1的二次型,在一个弱的矩条件下,获得了其强收敛、收敛速度等结果,并且给出了其在CDMA中的应用和模拟结果.  相似文献   

8.
对二阶非线性椭圆型方程∑ i,j=1n Di[Aij(x)Djy]+∑i=1n bi(x)Diy+q(x)f(y)=e(x)建立了若干新的振动准则, 所得结果仅依赖于方程在外区域Ω С Rn的一个子区域序列的信息而有别于已知的大多数结论.  相似文献   

9.
该文讨论了偶数阶边值问题 (-1)m y(2m)=f(t,y), 0≤t≤1,ai+1y(2i) (0)-βi+1y (2i+1) (0)=0, γi+1y(2i) (1)+δi+1y(2i+1) (1)=0,0≤i ≤m-1正解的存在性.借助于Leggett-Williams 不动点定理,建立了该问题存在三个及任意奇数个正解的充分条件.  相似文献   

10.
该文研究一类非线性高阶波动方程utt-a1Uxx+a_2ux4+a3ux4tt=φ(ux )x+f(u,ux,uxxuxxx,ux4)的初边值问题.证明整体古典解的存在唯一性并给出古典解爆破的充分条件.  相似文献   

11.
该文研究了如下的奇异椭圆方程Neumann问题$\left\{\begin{array}{ll}\disp -\Delta u-\frac{\mu u}{|x|^2}=\frac{|u|^{2^{*}(s)-2}u}{|x|^s}+\lambda|u|^{q-2}u,\ \ &;x\in\Omega,\\D_\gamma{u}+\alpha(x)u=0,&;x\in\partial\Omega\backslash\{0\},\end{array}\right.$其中$\Omega $ 是 $ R^N$ 中具有 $ C^1$边界的有界区域, $ 0\in\partial\Omega$, $N\ge5$. $2^{*}(s)=\frac{2(N-s)}{N-2}$ (该文研究了如下的奇异椭圆方程Neumann问题$\left\{\begin{array}{ll}\disp -\Delta u-\frac{\mu u}{|x|^2}=\frac{|u|^{2^{*}(s)-2}u}{|x|^s}+\lambda|u|^{q-2}u,\ \ &;x\in\Omega,\\D_\gamma{u}+\alpha(x)u=0,&;x\in\partial\Omega\backslash\{0\},\end{array}\right.$其中$\Omega $ 是 $ R^N$ 中具有 $ C^1$边界的有界区域, $ 0\in\partial\Omega$, $N\ge5$. $2^{*}(s)=\frac{2(N-s)}{N-2}$ (该文研究了如下的奇异椭圆方程Neumann问题其中Ω是RN中具有C1边界的有界区域,0∈■Ω,N≥5.2*(s)=2(N-s)/N-2(0≤s≤2)是临界Sobolev-Hardy指标, 10.利用变分方法和对偶喷泉定理,证明了这个方程无穷多解的存在性.  相似文献   

12.
Let γ*(D) denote the twin domination number of digraph D and let Cm Cn denote the Cartesian product of C_m and C_n, the directed cycles of length m, n ≥ 2. In this paper, we determine the exact values: γ*(C_2?C_n) = n; γ*(C_3 ?C_n) = n if n ≡ 0(mod 3),otherwise, γ*(C_3?C_n) = n + 1; γ*(C_4?C_n) = n + n/2 if n ≡ 0, 3, 5(mod 8), otherwise,γ*(C_4?C_n) = n + n/2 + 1; γ*(C_5?C_n) = 2n; γ*(C_6?C_n) = 2n if n ≡ 0(mod 3), otherwise,γ*(C_6?C_n) = 2n + 2.  相似文献   

13.
In countless applications, we need to reconstruct a $K$-sparse signal $\mathbf{x}\in\mathbb{R}^n$ from noisy measurements $\mathbf{y}=\mathbf{\Phi}\mathbf{x}+\mathbf{v}$, where $\mathbf{\Phi}\in\mathbb{R}^{m\times n}$ is a sensing matrix and $\mathbf{v}\in\mathbb{R}^m$ is a noise vector. Orthogonal least squares (OLS), which selects at each step the column that results in the most significant decrease in the residual power, is one of the most popular sparse recovery algorithms. In this paper, we investigate the number of iterations required for recovering $\mathbf{x}$ with the OLS algorithm. We show that OLS provides a stable reconstruction of all $K$-sparse signals $\mathbf{x}$ in $\lceil2.8K\rceil$ iterations provided that $\mathbf{\Phi}$ satisfies the restricted isometry property (RIP). Our result provides a better recovery bound and fewer number of required iterations than those proposed by Foucart in 2013.  相似文献   

14.
Let Ф be a non-negative locally integrable function on R^n and satisfy some weak growth conditions, define the potential type operator TФ by TФf(x)=∫R^n Ф(x-y)f(y)dy. The aim of this paper is to give several strong type and weak type weighted norm inequalities for the potential type operator TФ.  相似文献   

15.
On the real line, the Dunkl operators$$D_{\nu}(f)(x):=\frac{d f(x)}{dx} + (2\nu+1) \frac{f(x) - f(-x)}{2x}, ~~ \quad\forall \, x \in \mathbb{R}, ~ \forall \, \nu \ge -\tfrac{1}{2}$$are differential-difference operators associated with the reflection group $\mathbb{Z}_2$ on $\mathbb{R}$, and on the $\mathbb{R}^d$ the Dunkl operators $\big\{D_{k,j}\big\}_{j=1}^{d}$ are the differential-difference operators associated with the reflection group $\mathbb{Z}_2^d$ on $\mathbb{R}^{d}$.In this paper, in the setting $\mathbb{R}$ we show that $b \in BMO(\mathbb{R},dm_{\nu})$ if and only if the maximal commutator $M_{b,\nu}$ is bounded on Orlicz spaces $L_{\Phi}(\mathbb{R},dm_{\nu})$. Also in the setting $\mathbb{R}^{d}$ we show that $b \in BMO(\mathbb{R}^{d},h_{k}^{2}(x) dx)$ if and only if the maximal commutator $M_{b,k}$ is bounded on Orlicz spaces $L_{\Phi}(\mathbb{R}^{d},h_{k}^{2}(x) dx)$.  相似文献   

16.
The induced matching cover number of a graph G without isolated vertices,denoted by imc(G),is the minimum integer k such that G has k induced matchings M1,M2,…,Mk such that,M1∪M2 ∪…∪Mk covers V(G).This paper shows if G is a nontrivial tree,then imc(G) ∈ {△*0(G),△*0(G) + 1,△*0(G)+2},where △*0(G) = max{d0(u) + d0(v) :u,v ∈ V(G),uv ∈ E(G)}.  相似文献   

17.
This paper is devoted to the study of modular inequality

where and is a class of Volterra convolution operators restricted to the monotone functions. When with and the kernel , our results will extend those for the Hardy operator on monotone functions on Lebesgue spaces.

  相似文献   


18.
In this work, for a given smooth, generic Hamiltonian ${H : \mathbb{S}^{1} \times \mathbb{T}^{2n} \rightarrow \mathbb{R}}$ on the torus ${\mathbb{T}^{2n} = \mathbb{R}^{2n}/\mathbb{Z}^{2n}}$ we construct a chain isomorphism ${\Phi_{*} : (C_{*}(H), \partial^{M}_{*}) \rightarrow (C_{*}(H), \partial^{F}_{*})}$ between the Morse complex of the Hamiltonian action AH on the free loop space of the torus ${\Lambda_{0}(\mathbb{T}^{2n})}$ and the Floer complex. Though both complexes are generated by the critical points of A H , their boundary operators differ. Therefore, the construction of ${\Phi}$ is based on counting the moduli spaces of hybrid-type solutions which involves stating a new non-Lagrangian boundary value problem for Cauchy–Riemann type operators not yet studied in Floer theory. We finally want to note that the problem is completely symmetric. So we also could construct an isomorphism ${\Psi_{*} : (C_{*}(H), \partial^{F}_{*}) \rightarrow (C_{*}(H), \partial^{M}_{*})}$ .  相似文献   

19.
Let G be a graph with vertex set V(G) and edge set E(G). A labeling f : V(G) →Z2 induces an edge labeling f*: E(G) → Z2 defined by f*(xy) = f(x) + f(y), for each edge xy ∈ E(G). For i ∈ Z2, let vf(i) = |{v ∈ V(G) : f(v) = i}| and ef(i) = |{e ∈ E(G) : f*(e) =i}|. A labeling f of a graph G is said to be friendly if |vf(0)- vf(1)| ≤ 1. The friendly index set of the graph G, denoted FI(G), is defined as {|ef(0)- ef(1)|: the vertex labeling f is friendly}. This is a generalization of graph cordiality. We investigate the friendly index sets of cyclic silicates CS(n, m).  相似文献   

20.
In 1992, P. Polácik showed that one could linearly imbed any vector field into a scalar semi-linear parabolic equation on with Neumann boundary condition provided that there exists a smooth vector field on such that

In this short paper, we give a classification of all the domains on which one may find such a type of vector field.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号