首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A selected ion flow tube mass spectrometry (SIFT-MS) study of the reactions of H3O+, NO+ and O2+* ions with the ketones (M) 2-heptanone, 2-octanone, 2-nonanone, 2-undecanone and 2-aminoacetophenone has been conducted in preparation for studies of volatile emissions from bacteria. The H3O+ reactions all proceed rapidly via exothermic proton transfer, producing only MH+ ions that form their monohydrates when water vapour is present in the helium carrier gas. The O2+* reactions proceed rapidly via dissociative charge transfer producing parent cations M+* and some fragment ions. The NO+ reactions form the NO+M adduct ions at rates which are dependent on the pressure of the helium carrier gas. Combining the present NO+ kinetic data with those available from previous SIFT studies, the phenomenon of charge transfer complexing is clearly demonstrated. This results in adduct formation in these NO+/ketone reactions at or near the collisional rate. SIFT-MS spectra are presented to illustrate the simplicity of SIFT-MS analysis of ketones using both H3O+ and NO+ precursor ions.  相似文献   

2.
Following our recent observation that Pseudomonas bacteria in vitro emit hydrogen cyanide, we have found it necessary to investigate the ion chemistry of this compound and to extend the kinetics database for selected ion flow tube mass spectrometry (SIFT-MS) to allow the accurate quantification of HCN in moist air samples, including exhaled breath. Because of the proximity of the proton affinities of HCN and H2O molecules, the presence of water vapour can significantly distort HCN analysis in the presence of water vapour and a more sophisticated analytical procedure has to be developed. Thus, the reactions of H3O+(H2O)0,1,2,3 ions with HCN molecules have been studied in the presence of varying concentrations of water vapour, reactions on which SIFT-MS analysis of HCN relies. The results of these experiments have allowed an analytical procedure to be developed which has extended the kinetics database of SIFT-MS, such that HCN can now be quantified in humid air and in exhaled breath.  相似文献   

3.
Selected ion flow tube mass spectrometry (SIFT-MS) has been used to analyse on-line and in real time the exhaust gas emissions from a Caterpillar 3304 diesel engine under different conditions of load (idle and 50% of rated load) and speed (910, 1500 and 2200 rpm) using three types of fuel: an ultra-low-sulphur diesel, a rapeseed methyl ester and gas oil. SIFT-MS analyses of the alkanes, alkenes and aromatic hydrocarbons in the headspace of these fuels were also performed, but the headspace of the rapeseed methyl ester consists mainly of methanol and a compound with the molecular formula C4H8O. The exhaust gases were analysed for NO and NO2 using O2+* reagent ions and for HNO2 using H3O+ reagent ions. The following aldehydes and ketones in the exhaust gases were quantified by using the combination of H3O+ and NO+ reagent ions: formaldehyde, acetaldehyde, propenal, propanal, acetone, butanal, pentanal, butanone and pentanone. Formaldehyde, acetaldehyde and pentenal, all known respiratory irritants associated with sensitisation to asthma of workers exposed to diesel exhaust, are variously present within the range 100-2000 ppb. Hydrocarbons in the exhaust gases accessible to SIFT-MS analyses were also quantified as total concentrations of the various isomers of C3H4, C3H6, C4H6, C5H8, C5H10, C6H8, C6H10, C7H14, C6H6, C7H8, C8H10 and C9H12.  相似文献   

4.
We report the results of a study of the reactions of H(3)O(+), NO(+) and O(2)(+.) ions with H(2)S. This study was undertaken to provide a thorough understanding of the ion chemistry required for accurate quantification of H(2)S in humid air by selected ion flow tube mass spectrometry (SIFT-MS). It shows that slow reactions occur between H(3)S(+), the primary product ions of the H(3)O(+)/H(2)S reaction, and the abundant H(2)O molecules present in humid air and breath. These reactions disturb somewhat the quantification of H(2)S by this analytical method, but the kinetic data obtained in this study facilitate precise quantification of H(2)S in humid air. This study also shows that NO(+) does not react with H(2)S, and that O(2)(+.) does react rapidly with H(2)S, but the product H(2)S(+.) ions react rapidly with H(2)O. Thus, NO(+) and O(2)(+.) cannot be used as precursor ion for analysis of H(2)S in moist air by SIFT-MS. A sample SIFT mass spectrum is shown from which H(2)S and several other volatile compounds have been quantified in a sample of cow rumen gas.  相似文献   

5.
6.
The selectivity and sensitivity of selected ion flow tube mass spectrometry (SIFT‐MS) for individual breath analysis of haloamines has been improved by heating the flow tube in a commercial instrument to around 106°C. Data is presented showing the marked reduction in the number density of water clusters of product ions of common breath metabolites that are isobaric with the product ions from monochloramine and monobromamine that are used to monitor the haloamine concentrations. These results have direct relevance to the real‐time monitoring of chloramines in drinking water, swimming pools and food processing plants. However, once the isobaric overlaps from water cluster ions are reduced at the higher temperatures, there is no conclusive evidence showing the presence of haloamines on single breath exhalations in the mid parts per trillion range from examination of the breaths of volunteers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Selected ion flow tube mass spectrometry, SIFT-MS, has been used to determine the repeatability of the analysis of volatile metabolites within the breath of healthy volunteers, with emphasis on the influence of sampling methodology. Baseline instrument specific coefficients of variability for examined metabolites were as follows: acetone (1%), ammonia (1%), isoprene (2%), propanol (6%), ethanol (7%), acetic acid (7%), and hydrogen cyanide (19%). Metabolite concentration and related product ion count rate were identified as strong determinants of measurement variation. With the exception of ammonia, an orally released metabolite, variability in repeated on-line breath analysis tended to be lower for metabolites of systemic origin. Standardization of sampling technique improved the repeatability of the analysis of selected metabolites. Off-line (bag) alveolar breath sampling, as opposed to mixed (whole) breath sampling, likewise improved the repeatability of the analysis of all metabolites investigated, with the exception of acetic acid. We conclude that SIFT-MS analysis of common volatile metabolites within the breath of healthy volunteers is both reliable and repeatable. For selected metabolites, the finding that repeatability is improved through modification of sampling methodology may have implications in terms of future recommended practices.  相似文献   

8.
Data are presented for real‐time atmospheric monitoring of volatile organic chemicals (VOCs) in air using selected ion flow tube mass spectrometry (SIFT‐MS) technology. These measurements were made by one of the new generation of SIFT‐MS instruments. Results are shown for five VOCs that were continually monitored from a stationary sampling point over a 4‐day period: ethene, ethanol, 1,3‐butadiene, benzene and toluene. All analytes except ethene in the study have at least two simultaneous and independent measures of concentration. These results demonstrate the great advances in SIFT‐MS that have been made in recent years. 1,3‐Butadiene is measured at a concentration of 9 pptv with a precision of 44%. For a 1‐s integration time, a detection limit of 50 pptv is achieved. Instrument sensitivities are reported for all five analytes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The on‐line detection of gaseous peroxyacetyl nitrate (PAN) using selected ion flow tube mass spectrometry (SIFT‐MS) has been investigated using a synthetic sample of PAN in air at a humidity of ~30%. Using the H3O+ reagent ion, signals due to PAN at m/z 122, 77 and 95 have been identified. These correspond to protonated PAN, protonated peractetic acid and its water cluster, respectively. These products and their energetics have been probed through quantum mechanical calculations. The rate coefficient of H3O+ has been estimated to be 4.5 × 10?9 cm3 s?1, leading to a PAN sensitivity of 138 cps/ppbv. This gives a limit of detection of 20 pptv in 10 s using the [M+H]+ ion of PAN at m/z 122. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
11.
In selected ion flow tube mass spectrometry, SIFT‐MS, analyses of humid air and breath, it is essential to consider and account for the influence of water vapour in the media, which can be profound for the analysis of some compounds, including H2CO, H2S and notably CO2. To date, the analysis of methane has not been considered, since it is known to be unreactive with H3O+ and NO+, the most important precursor ions for SIFT‐MS analyses, and it reacts only slowly with the other available precursor ion, O. However, we have now experimentally investigated methane analysis and report that it can be quantified in both air and exhaled breath by exploiting the slow O/CH4 reaction that produces CH3O ions. We show that the ion chemistry is significantly influenced by the presence of water vapour in the sample, which must be quantified if accurate analyses are to be performed. Thus, we have carried out a study of the loss rate of the CH3O analytical ion as a function of sample humidity and deduced an appropriate kinetics library entry that provides an accurate analysis of methane in air and breath by SIFT‐MS. However, the associated limit of detection is rather high, at 0.2 parts‐per‐million, ppm. We then measured the methane levels, together with acetone levels, in the exhaled breath of 75 volunteers, all within a period of 3 h, which shows the remarkable sample throughput rate possible with SIFT‐MS. The mean methane level in ambient air is seen to be 2 ppm with little spread and that in exhaled breath is 6 ppm, ranging from near‐ambient levels to 30 ppm, with no significant variation with age and gender. Methane can now be included in the wide ranging analyses of exhaled breath that are currently being carried out using SIFT‐MS. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The reactions of carbon dioxide, CO2, with the precursor ions used for selected ion flow tube mass spectrometry, SIFT‐MS, analyses, viz. H3O+, NO+ and O, are so slow that the presence of CO2 in exhaled breath has, until recently, not had to be accounted for in SIFT‐MS analyses of breath. This has, however, to be accounted for in the analysis of acetaldehyde in breath, because an overlap occurs of the monohydrate of protonated acetaldehyde and the weakly bound adduct ion, H3O+CO2, formed by the slow association reaction of the precursor ion H3O+ with CO2 molecules. The understanding of the kinetics of formation and the loss rates of the relevant ions gained from experimentation using the new generation of more sensitive SIFT‐MS instruments now allows accurate quantification of CO2 in breath using the level of the H3O+CO2 adduct ion. However, this is complicated by the rapid reaction of H3O+CO2 with water vapour molecules, H2O, that are in abundance in exhaled breath. Thus, a study has been carried out of the formation of this adduct ion by the slow three‐body association reaction of H3O+ with CO2 and its rapid loss in the two‐body reaction with H2O molecules. It is seen that the signal level of the H3O+CO2 adduct ion is sensitively dependent on the humidity (H2O concentration) of the sample to be analysed and a functional form of this dependence has been obtained. This has resulted in an appropriate extension of the SIFT‐MS software and kinetics library that allows accurate measurement of CO2 levels in air samples, ranging from very low percentage levels (0.03% typical of tropospheric air) to the 6% level that is about the upper limit in exhaled breath. Thus, the level of CO2 can be traced through single time exhalation cycles along with that of water vapour, also close to the 6% level, and of trace gas metabolites that are present at only a few parts‐per‐billion. This has added a further dimension to the analysis of major and trace compounds in breath using SIFT‐MS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
14.
Following the observation that propanol is present in the breath samples of cystic fibrosis (CF) patients infected by Pseudomonas aeruginosa (PA), a study of the reactions of H(3)O(+), NO(+) and O(2) (+.) with 1-propanol and 2-propanol has been conducted using selected ion flow tube mass spectrometry (SIFT-MS). In this study the number and the distribution of the product ions from NO(+) reactions with the two propanol isomers under humid air conditions were able to differentiate between the two isomers. The reaction mechanisms and the structures of the product ions for these reactions, especially those with H(3)O(+) and NO(+), have been proposed. As an example, 2-propanol was shown to be present in a breath sample from one CF patient infected with PA, and also in a PA isolate from another CF patient grown on Pseudomonas-selective media. The results of this study allow an analytical procedure to be advanced for the analysis of the two propanol isomers, which can also be utilised in other applications.  相似文献   

15.
The value of the gas chromatography (GC) and selected ion flow tube mass spectrometry (SIFT-MS) combination for the analysis of trace gases is demonstrated by the quantification of acetone in air samples using the three precursor ions available to SIFT-MS, viz. H3O+, NO+ and O2+, and by the separation of the isomers 1-propanol and 2-propanol, and their analysis using H3O+ precursor ions. It is shown that the GC/SIFT-MS combination allows for accurate trace gas quantification obviating the regular, time-consuming calibrations that are usually required for the more commonly used detectors of GC systems, and the positive identification of isomers in mixtures that is often challenging using SIFT-MS alone. Thus, the GC/SIFT-MS combination paves the way to more confident analyses of complex mixtures such as exhaled breath.  相似文献   

16.
17.
18.
Selected ion flow tube mass spectrometry (SIFT-MS) is a technique that is well suited to the real-time analysis of head-space. SIFT-MS gives a non-discriminatory snapshot of the volatiles present and their amounts, and is considered to display less bias than chromatographic techniques as neither sample pre-treatment nor separation are necessary in most cases. The technique has been used for analysis of virgin olive oil head-space on more than 100 different oils. Twenty of these are reported. The results obtained using this technique differ from those normally reported from chromatographic analyses in that the dominant species in the head-space of all oils tested were methanol and ethanol. These volatiles were present in the head-space in the concentration ranges of 2.8-11.3 ppm (methanol) and 0.4-4.9 ppm (ethanol). (E)-2-Hexenal, normally reported as the dominant olive oil volatile, is found in significantly lower concentrations and is in the range of 0.02-1.6 ppm.  相似文献   

19.
Polyamines are a class of aliphatic compounds which include putrescine, cadaverine, spermine and spermidine. They are involved in a variety of cellular processes and have been implicated in a number of different pathophysiological mechanisms. Polyamines are volatile compounds having a distinctive odour normally perceived as being unpleasant. The measurement of their abundance has, however, been restricted to compounds present in the aqueous phase. Using selected ion flow tube mass spectrometry (SIFT‐MS) we have shown that the polyamines react with the ions H3O+, NO+ and O to form distinctive product ions allowing their levels to be quantified in the vapour phase. The low volatility of spermine did not allow extensive analysis of this compound by SIFT‐MS while the adherent properties of cadaverine and putrescine required the use of PTFE transfer lines and couplers. Our data suggested the presence of cadaverine and putrescine in both oral air and the headspace of putrefying bovine muscle, while product ions corresponding to putrescine and spermidine were found in the headspace of human semen. SIFT‐MS therefore appears to be a practical means of measuring vapour‐phase polyamine levels, having applications in biology, medicine and dentistry, and food science. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
We have used selected ion flow tube mass spectrometry (SIFT-MS) to analyse the vapours emitted by petrol and diesel fuels and the exhaust gases from petrol (spark ignition) and diesel (compression ignition) engine vehicles fitted with catalytic converters. Only those components of these media that have significant vapour pressures at ambient temperatures were analysed and thus particulates were obviously not detected. These media have been analysed using the full scope of SIFT-MS, i.e., with the three available precursor ions H3O+, NO+ and O2+. The combination of the H3O+ and NO+ analyses is seen to be essential to distinguish between different product ions at the same mass-to-charge ratio (m/z) especially in identifying aldehydes in the exhaust gases. The O2+ precursor ions are used to detect and quantify the large amount of nitric oxide present in the exhaust gases from both engine types. The petrol and diesel vapours consist almost exclusively of aliphatic alkanes, alkenes and alkynes (and dienes) and aromatic hydrocarbons. Some of these compounds appear in the exhaust gases together with several aldehydes, viz. formaldehyde, acetaldehyde, pentanal, pentenal (acrolein), butenal, and also methanol and ethanol. Acetone, nitric oxide and ammonia are also present, acetone and nitric oxide being much more abundant in the diesel exhaust gas than in the petrol exhaust gas. These data were obtained from samples collected into pre-evacuated stainless steel vessels. Trapping of the volatile compounds from the gas samples is not required and analysis was completed a few minutes later. All the above compounds are detected simultaneously, which demonstrates the value of SIFT-MS in this area of research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号