首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Emanation thermal analysis (ETA), DTA, SEM, and XRD were applied for the characterization of the effect of Na+ and NH 4 + ions used for saturation of natural Mg-vermiculite on the microstructure during heating. The microstructure changes were characterized by ETA under in situ conditions of samples heating in air in the temperature range 20–1300°C. It was found that Na+ and NH 4 + ions have a significant effect on the microstructure changes during heat treatment of the natural Mg-vermiculite sample saturated with these ions. For Mg-vermiculite and Na+ saturated vermiculite thet emperatures of the onset of the collapse of interlaminar space were determined by ETA. Differences in thermal stability of the microstructure of dehydrated vermiculite samples were observed by ETA: the microstructure of dehydrated Mg-vermiculite, and Na-vermiculite was found stable until 650 and 350°C, respectively. For dehydrated NH4-vermiculite the annealing of the microstructure started at 730°C. The onset temperatures of the formation of new crystalline phases were indicated by ETA as the increase of the radon release rate. The onset temperatures of the ordering of the vermiculite structure or sintering under presence of the glassy stage (for Na-vermiculite), respectively, were determined from the decrease of the radon release rate. The ETA results were confirmed by DTA, XRD and SEM.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

2.
Emanation thermal analysis (ETA), thermogravimetry, DTA and XRD were used in thermal characterization of natural vermiculite (Santa Olalla, Huelva, Spain) and of Na+- and - exchanged vermiculite samples during heating in air in the range 25-1100°C. A good agreement between the results of these methods was found. Changes in the radon release rate measured by ETA, which reflected the decrease and collapse of the interlayer space after the release of water as well as the formation of new crystalline phases were evaluated using a mathematical model. The model used for the evaluation was found suitable for the quantitative characterization of microstructure changes during in situ conditions of heating of vermiculite samples. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Acid leaching of vermiculite is an interesting procedure to prepare high surface area porous silica. Thermal behaviour of unground and ground vermiculite leached with HCl solutions has been studied by TG, DTA, ETA and high temperature XRD. Important differences have been observed in the thermal behaviour of unground and ground vermiculite after the acid treatments. Thus, for the acid-treated unground vermiculite, dehydrated vermiculite, enstatite and cristobalite were formed during the heating, while for the acid-treated ground vermiculite only iron oxides and cristobalite phases were observed. Structural modifications due to acid treatment were responsible for changes in the transport properties determined by ETA for the vermiculite samples.  相似文献   

4.
Summary Studies on ruthenia-titania based materials have been attractive because of their catalytic properties as well as due to the possibility of solid solution formation. Samples of pure ruthenia and ruthenia containing various amounts of titania (10-70 mol%) were investigated during heating of their hydroxide precursors from 20 to 800°C in air using emanation thermal analysis (ETA), thermogravimetry (TG), and differential thermal analysis (DTA). The resulting mixed oxide type materials were characterized by X-ray diffraction (XRD), which indicate the presence of three ruthenia-titania phases. The onset temperature of the crystallization of materials was identified by ETA results, whereas DTA effects characterized the crystallization in bulk of the samples. A good agreement was found between the ETA results and other characterization techniques used. ETA results, indicating the microstructural changes in surface and subsurface of ruthenia-titania based catalytic materials, can be used for optimization of their synthesis protocols to achieve the better physical properties.  相似文献   

5.
Emanation thermal analysis (ETA), thermogravimetry and high temperature XRD were used to characterize the thermal behavior during dehydration of natural Na montmorillonite (Upton Wyoming, USA) and homoionic montmorillonite (MMT) samples saturated with different cations, i.e. Li+, Cs+, NH4+, Mg2+ and Al3+. ETA results characterized radon mobility and microstructure changes that accompanied the mass loss of the samples due to dehydration on heating in air. A collapse of interlayer space between the silicate sheets after water release from the MMT samples was characterized by a decrease of the radon release rate, ΔE. Decreases in c-axis basal spacing (d 001) values determined from XRD patterns for the different montmorillonite samples follow the sequence:
The decrease of the radon release rate (ΔE) determined by ETA that characterized microstructure changes due to collapse of interlayer space corresponded well to differences in the c-axis basal spacing (Δd 001) values determined from the XRD patterns before and after samples dehydration.  相似文献   

6.
Thermal behavior of talc samples (from locality Puebla de Lillo, Spain) were characterized by emanation thermal analysis (ETA), DTA and TG. The ETA, based on the measurement of radon release rate from samples, revealed a closing up of surface micro-cracks and annealing of microstructure irregularities of the talc samples on heating in the range 200–500°C. For ground talc sample a crystallization of non-crystalline phase formed by grinding, into orthorhombic enstatite was characterized as a decrease of radon mobility in the range 785–825°C and by a DTA exothermal effect with the maximum at 830°C. ETA results characterized the microstructure development of the talc samples on heating and served to evaluate their radon mobility and transport properties on heating and cooling. Transport properties of the talc samples were evaluated by using ETA experimental data measured during heating to 600 and 1300°C, respectively, and subsequent cooling to room temperature.  相似文献   

7.
Emanation thermal analysis (ETA), based on the measurement of the release of radon previously incorporated into the sample, was used to characterize the differences in the thermal behavior porous titania film (thickness 200 nm),when heated in argon and in oxygen, respectively, in the range from 20 to 800°C. It was observed that the annealing of porosity and structure defects in the near surface layers of the porous titania film (anatase) was enhanced on heating in oxygen in comparison to the heating in argon. ETA results were compared with SEM micrographs and XRD patterns of the titania film samples heated to 500 and 800°C, respectively. A mathematical model was used for the evaluation of the temperature dependence of the titania films microstructure development.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

8.
The effect of grinding on thermal behavior of pyrophyllite and talc as commonly used ceramic clay minerals was investigated by DTA, TG, emanation thermal analysis (ETA), B.E.T. surface area (s.a.) measurements, X-ray diffraction (XRD) and scanning electron microscopy (SEM). A vibratory mill was used in this study, grinding time was 5 min. It was found that the grinding caused an increase in surface area and a grain size reduction of the samples. From TG and DTA results it followed that grinding caused a decrease of the temperature at which the structure bound OH groups released. The formation of high temperature phases was enhanced with the ground samples. For the ground talc sample the crystallization of non-crystalline phase into orthorhombic enstatite was observed in the range of 800°C. For ground pyrophyllite a certain agglomeration of grains was observed in the range above 950°C. Moreover, for both clays the ETA characterized a closing up of subsurface irregularities caused by grinding as a decrease of the emanation rate in the range 250–400°C. The comparison of thermal analysis results with the results of other methods made it possible to better understand the effect of grinding on the ceramic clays.  相似文献   

9.
Summary Titania-based photocatalytic materials were prepared by sol-gel method using Fe3+ and polyethyleneglycol (PEG600) as additives. Thermogravimetry (TG), differential thermal analysis (DTA) and evolved gas analysis (EGA) with MS detection were used to elucidate processes that take place during heating of Fe3+ containing titania gels. The microstructure development of the Fe2O3/TiO2 gel samples with and without PEG600 admixtures was characterized by emanation thermal analysis (ETA) under in situ heating in air. A mathematical model was used for the evaluation of ETA results. Surface area and porosity measurements of the samples dried at 120°C and the samples preheated for 1 h to 300 and 500°C were compared. From the XRD measurements it was confirmed that the crystallization of anatase took place after thermal heating up to 600°C.  相似文献   

10.
The thermal behaviour of low-density polyethylene (LDPE) as powder and pellet have been characterised by means of the emanation thermal analysis (ETA) during heating in air. The ETA was used in the study of LDPE polymer before and after irradiation to various doses of high energy electrons. It was shown that the ETA reflects microstructure changes taking place as the result of thermal degradation and oxidation pyrolysis of the polymer samples. It was shown in the study of LDPE products, resulting after the electron-beam treatment, that the results of ETA reflect structural changes caused by the radiation over the range of absorbed doses from 0 to 20 MGy. The annealing chemical radicals produced by the electron-beam irradiation was assessed by comparing ETA curves measured during first and second heating runs.  相似文献   

11.
Brannerite based ceramics, designed as a matrix for immobilization of high level radioactive waste (HLW), was investigated from the viewpoint of microstructure changes and atomic transport properties caused by leaching of the ceramics at pH 2 and 11, respectively. Scanning electron microscopy (SEM) and emanation thermal analysis (ETA) techniques were used for this purpose. Surface morphology, microstructure changes and transport properties of both ‘as-leached’ and ‘as-prepared’ samples were compared and the effect of leaching on the thermal behavior of the ceramics samples heated in the temperature range from 20 to 1250°C was characterized. The mobility of radon in the brannerite ceramics was evaluated by mathematical modeling from ETA results. The thermal behavior of the non-leached brannerite ceramics sample and its natural analogue brannerite mineral was compared using the ETA. On leave from the Institute of Chemical Sciences, Faculty of Sciences, P. J. Ŝafárik University, 041 54 Koŝice, Slovak Republic  相似文献   

12.
13.
Emanation thermal analysis (ETA) was used for characterization of thermal behaviour of SiCf/SiC composites on heating in argon and air, respectively. Effect of gas environment (argon, air) and helium ions implantation on the microstructure development of the SiCf/SiC composite prepared by chemical vapour infiltration (CVI) from Nicalon CG fibres was investigated under in situ conditions of heating. The annealing of near surface structure irregularities was observed in the range 280-700°C and evaluated by means of the mathematical model, assuming that the structure irregularities served as diffusion paths for radon. The ETA reflected the formation of amorphous silica and its subsequent crystallization to crystoballite. Morphology of the SiCf/SiC samples before and after the heat treatments was characterized by means of SEM. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Emanation Thermal Analysis (ETA), based on the measurement of the release of radon from previously labelled samples, has been used for 'in-situ’ characterisation of the morphology changes of intercalated montmorillonitic clay. The thermal behaviour of hydroxyaluminium intercalated montmorillonite was monitored in course of the preparation of alumina pillared montmorillonite, making possible to determine optimal temperature for the isothermal treatment of the intermediate product. Moreover, the thermal stability of alumina pillared montmorillonite porous structure was determined from the ETA data. A good agreement of ETA data and surface area, XRD patterns. DTA, and TG resulted was found. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Thermal behaviour of N-doped titania powders prepared by heat treatment of anatase in gaseous ammonia at 550 and 575°C, respectively, was characterized by emanation thermal analysis (ETA). The ETA results were used to assess transport properties of the samples subsurface using the mobility data of radon atoms previously incorporated into the samples to the depth of 60 nm. It was demonstrated that the radon permeability of anatase in the temperature range 50–500°C was enhanced for the N-doped titania as compared to the non-doped titania powder. Microstructure changes accompanying the anatase-rutile transition were pointed out from the decrease of the radon release rate in the temperature range 850–1000°C. The results of surface area and porosity measurements, DTA results as well XRD patterns supported the ETA results.  相似文献   

16.
Processes taking place during formation of B-C-N ceramics by thermal treatment of organic precursors were investigated using emanation thermal analysis (ETA), differential thermal analysis (DTA) and thermogravimetry (TG). An additional information about thermal behavior of precursors used for preparation of BC4N, BN and CNx ceramic systems by heating in argon up to 1100°C was obtained. The ETA enabled us to characterize microstructure changes in the samples at in situ conditions of thermal treatment. A good agreement of ETA, TG and DTA results was found. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
The theoretical background for the use of radon diffusion as a probe of microstructure changes in solids is given. The high sensitivity of the emanation thermal analysis (ETA) in the study of solid state processes especially interactions taking place on surfaces and in the near surface layers is described. The increasing sensitivity of the method towards bulk processes with rising temperature is theoretically shown. The background considerations to be used in the mathematical modeling of temperature dependences of the radon release from solids on heating (i.e. simulated ETA curves) are presented. Various models for radon diffusion and various functions describing the annealing of structure irregularities, which served as diffusion paths for radon, were used in the modeling. It was shown, that ETA is able to characterize microstructure changes in the surface layers of the thickness from several nanometers to several micrometers.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

18.
Emanation thermal analysis (ETA) was used to characterize microstructure changes during heating of Mg–Al–CO3 layered double hydroxide (LDH) in the temperature range of 293–1473 K. It was confirmed by ETA that the formation of an intermediate phase with grafted CO32– anions in the hydroxide layers took place in the temperature range of 508–523 K and the formation of Mg–Al mixed oxide (MO) occurred in the range 623–773 K. The small peak of the emanation rate at 603 K indicated the degradation of the layered structure and the broad peak in the range of 1073–1273 K characterized the onset of the separation of the decomposition products of MO into MgO and Mg2Al4O7. The ETA results revealed that dehydration of the product with grafted CO32– anions occurred at lower temperatures than that of the initial Mg–Al–CO3 LDH.  相似文献   

19.
The silica waste originating from a geothermal power plant in Mexico was investigated with the aim of finding its applicability as a raw secondary material for ceramics production. The thermal behaviour of the original silica waste (containing NaCl and KCl from marine brine) and of the purified silica was characterized by means of DTA/TG, emanation thermal analysis (ETA) and thermodilatometry (TD). The reactivity of the purified silica waste mixed with CaCO3 (1.8 mass%) was characterized by means of ETA, DTA and TG. The microstructures and phase compositions of the final products prepared by heating in air were tested by means of X-ray diffraction and of scanning electron microscopy coupled with electron probe X-ray microanalysis. The thermal analysis methods allowed determination of the optimal conditions for thermal treatment of the silica waste in order to obtain partly sintered porous materials for use as refractory bricks. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Thermal behaviour of synthetic pyroaurite-like anionic clay with molar ratio Mg/Fe=2 was studied in the range of 60-1100°C during heating in air. TG/DTA coupled with evolved gas analysis, emanation thermal analysis (ETA), surface area measurements, XRD, IR and Mössbauer spectroscopy were used. Microstructure changes characterized by ETA were in a good agreement with the results of surface area measurements and other methods. After the thermal decomposition of the pyroaurite-like anionic clay, which took place mainly up to 400°C, a predominantly amorphous mixture of oxides is formed. A gradual crystallization of MgO (periclase) and Fe2O3 (maghemite) was observed at 400-700°C by XRD. The MgFe2O4 spinel and periclase were detected at 800-1100°C. The spinel formation was also confirmed by Mössbauer spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号