首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
This paper presents a theoretical analysis for the dark current characteristics of different quantum infrared photodetectors. These quantum photodetectors are quantum dot infrared photodetectors (QDIP), quantum wire infrared photodetectors (QRIP), and quantum well infrared photodetectors (QWIP). Mathematical models describing these devices are introduced. The developed models accounts for the self-consistent potential distribution. These models are taking the effect of donor charges on the spatial distribution of the electric potential in the active region. The developed model is used to investigate the behavior of dark current with different values of performance parameters such as applied voltage, number of quantum wire (QR) layers, QD layers, lateral characteristic size, doping quantum wire density and temperature. It explains strong sensitivity of dark current to the density of QDs/QRs and the doping level of the active region. In order to confirm our models and their validity on the practical applications, a comparison between the results obtained by proposed models and that experimentally published are conducted and full agreement is observed. Several performance parameters are tuned to enhance the performance of these quantum photodetectors through the presented modeling. The resultant performance characteristics and comparison among them are presented in this work. From the obtained results we notice that the total dark current in the QRIPs can be significantly lower than that in the QWIPs. Moreover, main features of the QRIPs such as the large gap between the induced photocurrent and dark current open the way for overcoming the problems of quantum dot infrared photodetectors.  相似文献   

2.
3.
This paper presents a theoretical analysis for the characteristics of quantum wire infrared photodetectors (QRIPs). Mathematical model describing this device is introduced. Maple 4 software is used to device this model. The developed model is used to investigate the behavior of the device with different values of performance parameters such as number of quantum wire layers, lateral characteristic size, and temperature. The modeling results are validated against experimental published work and full agreements are obtained. Several performance parameters are tuned to enhance the performance of these quantum photodetectors through the presented modeling. The resultant performance characteristics and comparison among both quantum well infrared photodetectors (QWIPs) and QRIPs are presented in this work. From the obtained results we notice that the total dark current in the QRIPs can be significantly lower than that in the QWIPs. Moreover, main features of the QRIPs such as the large gap between the induced photocurrent and dark current open the way for overcoming the problems of quantum dot infrared photodetectors (QDIPs).  相似文献   

4.
量子点红外探测器的特性与研究进展   总被引:2,自引:0,他引:2  
半导体材料红外探测器的研究一直吸引人们非常广泛的兴趣.以量子点作为有源区的红外探测器从理论上比传统量子阱红外探测器具有更大的优势.文章讨论了量子点红外探测器几个重要的优点,包括垂直入射光响应、高光电导增益、更低的暗电流、更高的响应率和探测率,等等.此外,报道了量子点红外探测器研究中一些最新的实验结果.在此基础上,分析了现存问题,并提出了进一步提高器件性能的几种可能途径.  相似文献   

5.
This paper presents a method to evaluate and improve the performance of quantum dot infrared photodetectors (QDIPs). We proposed a device model for QDIPs. The developed model accounts for the self-consistent potential distribution, features of the electron capture and transport in realistic QDIPs in dark and illumination conditions. This model taking the effect of donor charges on the spatial distribution of the electric potential in the QDIP active region. The model is used for the calculation of the dark current, photocurrent and detectivity as a function of the structural parameters such as applied voltage, doping QD density, QD layers, and temperature. It explains strong sensitivity of dark current to the density of QDs and the doping level of the active region. In order to confirm our models and their validity on the practical applications, a comparison between the results obtained by proposed models and that experimentally published are conducted and full agreement is observed. Results show the effectiveness of methodology introduced.  相似文献   

6.
Quantum dot infrared photodetectors (QDIPs) have many advantages over other types of semiconductor-based photodetectors. However some of its characteristics have been investigated theoretically, there are many unstudied points. In this paper a new approach is presented to evaluate quantum dot infrared photodetectors dark current and photocurrent. In this study, it is assumed that both thermionic emission and field-assisted tunneling mechanisms determine the dark current of quantum dot detectors. Based on these assumptions, new formula for average number of electron in a quantum dot for both, dark and illumination condition is calculated, which is more accurate than the previous reported formulas; because in deriving previous reported formulas, it was assumed only thermionic emission determines dark current but field-assisted tunneling mechanisms has not been considered. Then numerical method is used to calculate the average number of electron in a quantum dot and to determine dark current and photocurrent. The theoretical results are compared with experimental data. They have good agreement with available experimental data.  相似文献   

7.
A design for an IR photodetector is proposed and described that uses an array of II–VI semiconductor quantum wire heterostructures and that uses intersubband transitions in the conduction band of the wires as the IR detection mechanism. The detection mechanism of these quantum wire infrared detectors (QRIP) is similar to that used in quantum well infrared photodetectors (QWIP) but important differences arise due to the further confinement of the electrons in an additional dimension. QWIPs are briefly described, including their undesirable aspects and how QRIPs offer solutions to these problematic issues. The electron quantum states, absorption and other important aspects of several QRIP designs are calculated using analytical and finite difference techniques. A potential design for a focal plane array using QRIPs is described that uses a nanopatterned alumina template for DC electrodeposition of II–VI semiconductor quantum wires oriented normal to the substrate.  相似文献   

8.
Investigation of the quantum dot infrared photodetectors dark current   总被引:1,自引:0,他引:1  
Quantum dot infrared photodetectors (QDIPs) are more efficient than other types of semiconductor based photodetectors; so it has become an actively developed field of research. In this paper quantum dot infrared photodetector dark current is evaluated theoretically. This evaluation is based on the model that was developed by Ryzhii et al. Here it is assumed that both thermionic emission and field-assisted tunneling mechanisms determine the dark current of QDIPs; moreover we have considered Richardson effect, which has not been taken into account in previous research. Then a new formula for estimating average number of electrons in a quantum dot infrared photodetector is derived. Considering the Richardson effect and field-assisted tunneling mechanisms in the dark current improves the accuracy of algorithm and causes the theoretical data to fit better in the experiment. The QDIPs dark current temperature and biasing voltage dependency, contribution of thermionic emission and field-assisted tunneling at various temperatures and biasing voltage in the QDIPs dark current are investigated. Moreover, the other parameter effects like quantum dot (QD) density and QD size effect on the QDIPs dark current are investigated.  相似文献   

9.
The detectivity of Quantum dot infrared photodetectors (QDIPs) has always attracted a lot attention as a very important performance parameter. In the paper, based on the theoretical model for the detectivity with the consideration of the common influence of the microscale electron transport, the nanoscale electron transport and the self-consistent potential distribution of the electrons, the dependence of the detectivity of the QDIP on temperature is discussed by analyzing the influence of the temperature on the average electrons number in a quantum dot. Specifically, the average electrons number in a quantum dot shows different change trends (from the increase to decrease) with the increase of the temperature, but the detectivity presents the single decrease trend with the temperature, which can provide the designers with the theoretical guidance for the performance optimization of the QDIP devices.  相似文献   

10.
Quantum dots infrared photodetectors (QDIPs) theoretically have several advantages compared with quantum wells infrared photodetectors (QWIPs). In this paper, we discuss the theoretical advantages of QDIPs including the normal incidence response, lower dark current, higher responsivity and detectivity, etc. Recent device fabrication and experiment results in this field are also presented. Based on the analysis of existing problems, some approaches that would improve the capability of the device are pointed out.  相似文献   

11.
12.
Various structures of self-assembled Ge/Si quantum dot infrared photodetectors were implemented and investigated. The electronic structure of the QDIPs was studied by electrical and optical techniques including IV characteristics, dark current, photoconductivity, photoluminescence, and photo-induced infrared absorption. The photoconductive spectra consist of a broad multi-peak, composed of peaks ranging from 70 to 220 meV. Their relative intensity changes with bias. Comparative dark current measurements were performed. Dark current limits the performance of this first generation of Ge/Si QDIPs. It is plausible that direct doping in the dot layer is a viable way of reducing the dark current.  相似文献   

13.
A modulation doped thyristor concept is described for LWIR photodetection based upon intersubband bound to continuum absorption. The intersubband absorption generates photocurrent from undoped quantum wells to modulation doped layers (MDL). Due to the lower dark current compared to conventional quantum well infrared photodetectors (QWIPs), the thyristor infrared detector operates with little or no cooling and with similar or better performance than QWIPs at low temperatures. The operating characteristics of absorption coefficient, quantum efficiency, responsivity, detectivity, infrared gain, and dark current are determined as a function of thyristor voltage and input power level in the range of 1 μW/cm2.  相似文献   

14.
Quantum dot infrared photodetectors (QDIPs) have already attracted more and more attention in recent years due to a high photoconductive gain, a low dark current and an increased operating temperature. In the paper, a device model for the QDIP is proposed. It is assumed that the total electron transport and the self-consistent potential distribution under the dark conditions determine the dark current calculation of QDIP devices in this model. The model can be used for calculating the dark current, the photocurrent and the detectivity of QDIP devices, and these calculated results show a good agreement with the published results, which illustrate the validity of the device model.  相似文献   

15.
Quantum dot infrared photodetectors (QDIPs) have made significant progress after their early demonstration about a decade ago. We review the progress made by QDIP technology over the last few years and compare QDIPs with quantum well infrared photodetectors (QWIPs). It is shown that the performance of QDIPs has significantly improved using novel architectures such as dots‐in‐a‐well designs, and large‐format (1 K × 1 K) focal plane arrays have been realized. However, even though there are significant reports of performance parameters better than QWIPs from single‐pixel devices, QDIP‐based focal plane arrays are still a factor of 3–5 worse in terms of noise equivalent temperature difference. We discuss the reasons for the performance gap and the key scientific and technological challenges that need to be addressed to achieve the full potential of QD‐based technology.  相似文献   

16.
A model is developed to provide estimates of the performance of quantum well intersubband infrared photodetectors. By introducing an energy filter to reduce the dark current, the quantum well device performance is improved. The amount of reduction in dark current depends upon the height of the energy filter barrier which can be varied by bias voltage. The energy distributions of the dark current and photocurrent electrons are discussed. Calculated results are presented for detectors with different quantum well widths, including the cases of bound-to-bound and bound-to-continuum transitions. The reduction in dark current results in a higher detectivity, and a substantial improvement over traditional designs can be obtained for some well widths.  相似文献   

17.
We have exploited the artificial atom-like properties of epitaxially grown self-assembled quantum dots (QDs) for the development of high operating temperature long wavelength infrared (LWIR) focal plane arrays (FPAs). QD infrared photodetectors (QDIPs) are expected to outperform quantum well infrared detectors (QWIPs) and are expected to offer significant advantages over II–VI material based FPAs. We have used molecular beam epitaxy (MBE) technology to grow multi-layer LWIR dot-in-a-well (DWELL) structures based on the InAs/InGaAs/GaAs material system. This hybrid quantum dot/quantum well device offers additional control in wavelength tuning via control of dot-size and/or quantum well sizes. DWELL QDIPs were also experimentally shown to absorb both 45° and normally incident light. Thus we have employed a reflection grating structure to further enhance the quantum efficiency. The most recent devices exhibit peak responsivity out to 8.1 μm. Peak detectivity of the 8.1 μm devices has reached 1 × 1010 Jones at 77 K. Furthermore, we have fabricated the first long-wavelength 640 × 512 pixels QDIP imaging FPA. This QDIP FPA has produced excellent infrared imagery with noise equivalent temperature difference of 40 mK at 60 K operating temperature.  相似文献   

18.
In this paper, a novel structure for quantum ring inter-subband photodetectors (QRIP) is proposed to reduce its dark current. Some additional layers including asymmetric multi-barrier resonant tunneling (AMBRT) in absorption region layers are exploited to provide near unity tunneling probability for generated photocurrents and completely reject thermally generated electrons. AMBRT structure consists of three asymmetric AlGaAs barriers and two InGaAs wells which are designed for operation wavelength of generated photocurrents by absorption of 20 μm. Simulation results show that AMBRT can considerably reduce the dark current compared to previously proposed resonant tunneling structure about three orders of magnitude. As a consequent, higher specific detectivity for AMBRT-QRIP is obtained in the order of ∼1011 cm Hz1/2/W at 100 K.  相似文献   

19.
Temperature dependent behavior of the responsivity of InAs/GaAs quantum dot infrared photodetectors was investigated with detailed measurement of the current gain. The current gain varied about two orders of magnitude with 100 K temperature change. Meanwhile, the change in quantum efficiency is within a factor of 10. The dramatic change of the current gain is explained by the repulsive coulomb potential of the extra carriers in the QDs. With the measured current gain, the extra carrier number in QDs was calculated. More than one electron per QD could be captured as the dark current increases at 150 K. The extra electrons in the QDs elevated the Fermi level and changed the quantum efficiency of the QDIPs. The temperature dependence of the responsivity was qualitatively explained with the extra electrons.  相似文献   

20.
In this paper questions of optimization of growth conditions in the method of molecular beam epitaxy for creation of high-efficient quantum dot infrared photodetectors are considered. As a model material system for theoretical investigations, heterostructures with germanium-silicon quantum dots on the silicon surface are chosen. For calculations of the dependencies of quantum dots array parameters on synthesis conditions the kinetic model of growth of differently shaped quantum dots based on the general nucleation theory is proposed. The theory is improved by taking into account the change in free energy of nucleation of an island due to the formation of additional edges of islands and due to the dependence of surface energies of facets of quantum dots on the thickness of a 2D wetting layer during the Stranski–Krastanow growth. Calculations of noise and signal characteristics of infrared photodetectors based on heterostructures with quantum dots of germanium on silicon are done. Dark current in such structures caused by thermal emission and barrier tunneling of carriers, as well as detectivity of the photodetector in the approximation of limitation by generation-recombination noises are estimated. Moreover, the presence of dispersion of quantum dots by size is taken into account in the calculations of the generation-recombination noises. Results of calculations of the properties of structures with quantum dots and their dependencies on growth parameters, as well as the characteristics of quantum dot photodetectors are presented. Comparison of the estimated parameters of quantum dots ensembles and the characteristics of quantum dot photodetectors with experimental data is carried out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号