首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
An original method for describing λ(c) has been developed. This is one of the most effective procedures, more so than a modernization of earlier equations. Like the limiting Onsager law, it does not contain any freely variable parameters and is comparable to this law, while being preferable in the coverage of the concentration range. For concentrated solutions, it is comparable in efficiency to calculations using the modernized Falkengagen-Wishau-Stokes equation, but is preferable in avoiding the use of the experimental values of λ(c) for determining the a characteristic. λ(c) can occasionally be described without any characteristics of the closest attraction of ions, using only the osmotic coefficients ? tabulated in the literature.  相似文献   

3.
Conductivity measurements of glutaric acid and disodium glutarate in dilute aqueous solutions were performed in the 288.15 to 323.15 K temperature range. The limiting equivalent conductances of glutarate anions, λ o(HGlut,T) and λ o(1/2Glut2−,T), and the dissociation constants of glutaric acid, K 1(T) and K 2(T), were derived by the use of the Onsager and the Quint and Viallard conductivity equations. The applied molecular model was successfully confirmed by analyzing the conductivities of sodium hydrogen glutarate at 298.15 K.  相似文献   

4.
Electrical Conductance Studies in Aqueous Solutions with Ascorbate Ions   总被引:1,自引:0,他引:1  
Conductivity measurements in dilute aqueous solutions of L-ascorbic acid, sodium-L-ascorbate, magnesium-L-ascorbate, calcium-L-ascorbate and ferrous-L-ascorbate were performed in the (288.15 to 323.15) K temperature range. The limiting molar conductances of the ascorbic anion, λ(HAsc, T), and the dissociation constants of ascorbic acid, K(T), were derived by the use of the Debye-Hückel equation for the activity coefficients and the Onsager and Quint and Viallard conductivity equations.  相似文献   

5.
The formation of iron(III) complexes with chelating azidokojate anions L was investigated in aqueous solutions as a function of the pH and the c(Fe3+):c(HL) molar ratio. Based on the stability constants, the distribution among the above complexes, [Fe(H2O)6]3+, and [Fe(H2O)5(OH)]2+ were calculated in solutions of various compositions. The complexes are redox stable in aqueous solutions both in the dark and in visible laboratory light. Properties of the investigated azidokojic acid and its iron(III) complexes are compared with those required for therapeutic applications as alternative iron chelators.  相似文献   

6.
Conductivity measurements of dilute aqueous solutions of DL-aspartic acid, potassium-DL-aspartate and magnesium-DL-aspartate were performed in the 288.15 to 323.15 K temperature range. The limiting molar conductances of aspartate anions, λ 0(HAsp,T) and the dissociation constants of aspartic acid, K 2(T) were derived by use of the Debye-Hückel equation for the activity coefficients and the Onsager, and Quint and Viallard conductivity equations.  相似文献   

7.
Conductivity measurements on aqueous solutions of D-tartaric acid, L-tartaric acid, andmeso-tartaric acid were performed in the temperature range 278.15–308.15 K. The equivalent limiting conductivity of the bitartrate anion, λ°(HTar-), is evaluated with regard to the primary and secondary steps of dissociation of the acids in aqueous solutions by use of the Quint and Viallard equation for unsymmetrical electrolytes.  相似文献   

8.
Conductivity measurements in dilute aqueous solutions of L-glutamic acid, DL-glutamic acid, sodium-L-glutamate and magnesium-L-glutamate, were performed in the 288.15 to 323.15 K temperature range. The limiting molar conductivities of glutamic anions, λ o(HGlu,T) and the dissociation constants of glutamic acid, K 2(T) were derived by the use of the Debye–Hückel equation for the activity coefficients and the Onsager, and Quint and Viallard conductivity equations.  相似文献   

9.
Conductivity measurements on aqueous solutions of disodium tartrate, dipotassium tartrate, sodium potassium tartrate, and diammonium tartrate were performed in the temperature range 5 to 35°C. The equivalent limiting conductivity of tartrate anion, λ(l/2 Tar2-) is evaluated.  相似文献   

10.
Quasielastic light scattering measurements are reported for experiments performed on mixtures of gelatin and glutaraldehyde (GA) in the aqueous phase, where the gelatin concentration was fixed at 5 (w/v) and the GA concentration was varied from 1×10−5 to 1×10−3 (w/v). The dynamic structure factor, S(q,t), was deduced from the measured intensity autocorrelation function, g 2(τ), with appropriate allowance for heterodyning detection in the gel phase. The S(q,t) data could be fitted to S(q,t)=Aexp(−D f q 2 t)+Bexp(−tc)β, both in the sol (50 and 60 C) and gel states (25 and 40 C). The fast-mode diffusion coefficient, D f showed almost negligible dependence on the concentration of the crosslinker GA; however, the resultant mesh size, ξ, of the crosslinked network exhibited strong temperature dependence, ξ∼(0.5−χ)1/5exp(−A/RT) implying shrinkage of the network as the gel phase was approached. The slow-mode relaxation was characterized by the stretched exponential factor exp(−tc)β. β was found to be independent of GA concentration but strongly dependent on the temperature as β=β01 T2 T 2. The slow-mode relaxation time, τc, exhibited a maximum GA concentration dependence in the gel phase and at a given temperature we found τc(c)=τ01 c2 c 2. Our results agree with the predictions of the Zimm model in the gel case but differ significantly for the sol state. Received: 25 May 1999 /Accepted in revised form: 27 July 1999  相似文献   

11.
We report the evidence for attractive interaction of latex particles which are covered by poly(ethylene oxide) chains. These particles are suspended in aqueous solutions of ammonium sulfate. The interaction is probed by measurements of the turbidity of the suspensions up to 70 g/l. Turbidity is insensitive to multiple scattering and allows the static structure factor, S(q) [q=(4πn 00)sin(θ/2), where θ is the scattering angle, n0 is the refractive index of the medium and λ0 is the wavelength in vacuo], to be determined at small q values. The analysis of S(q) at small q values yields information about possible attraction of the particles. The analysis of the turbidity data furthermore shows that no aggregation took place in these systems. A weak but long-range attractive interaction was found at ammonium sulfate concentrations of 0.01 and 0.1 M. The relation of this attractive force to hydrophobic forces is discussed. Received: 9 March 2000/Accepted: 28 June 2000  相似文献   

12.
The reaction of the · OH radical with the oxalate ion in an acidic aqueous solution was studied by pulse radiolysis. The rate constant for the reaction of formation of the radical HOOC-COO·(λmax = 250 nm, ɛ = 1800 L mol−1 cm−1) is (5.0±0.5)·107 L mol−1 s−1. In the reaction with the hydrogen ion (k = 1.1·107 L mol−1 s−1), the radical HOOC-COO· is transformed into a nonidentified radical designated arbitrarily as H+(HOOC-COO)· (λmax = 260 nm, ɛ = 4000 L mol−1 cm−1). Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1165–1167, June, 2008.  相似文献   

13.
In neutral aqueous solution of (phenylthio)acetic acid, hydroxyl radical is observed to react with a bimolecular rate constant of 7.2 × 10-1 dm3 mols and the transient absorption bands are assigned toOH radical addition to benzene and sulphur with a rough estimated values of 50 and 40% respectively. The reaction of theOH radical with diphenyl sulphide (k = 4.3 × 108 dm3 mol−1 s−1) is observed to take place with formation of solute radical cation, OH-adduct at sulphur and benzene with estimated values of about 12, 28 and 60% respectively. The transient absorption bands observed on reaction ofOH radical, in neutral aqueous solution of 4-(methylthio)phenyl acetic acid, are assigned to solute radical cation (λmax = 550 and 730 nm), OH-adduct at sulphur (λmax = 360 nm) and addition at benzene ring (λmax = 320 nm). The fraction ofOH radical reacting to form solute radical cation is observed to depend on the electron-withdrawing power of substituted group. In acidic solutions, depending on the concentration of acid and electron-withdrawing power, solute radical cation is the only transient species formed on reaction ofOH radical with the sulphides studied.  相似文献   

14.
In concentrated salt solutions the average distances between the ions, d av=1.1844⋅(∑ν i c i )−1/3 nm, are commensurate with the sizes of the solvated ions, so that no ‘bulk solvent’ remains. This is illustrated with two saturated aqueous solutions, where 16.67 mol⋅dm−3 CsF at 75 °C has d av(Cs–F)=0.368 nm and 14.54 mol⋅dm−3 LiI at 80 °C has d av(Li–I)=0.385 nm. The minimal distance required for the bare ions (sum of their radii) are 0.303 nm for CsF and 0.289 nm for LiI. Hence no water molecule, diameter 0.276 nm, can be fitted between the ions to form linear or slightly bent hydrogen bonds. Some recent work ignoring such constraints, even in 3–6 mol⋅dm−3 solutions, is criticized on this account.  相似文献   

15.
[VIVO(acac)2] reacts with the methanolic solutions of tridentate dibasic ONO donor hydrazone ligands derived from the condensation of benzoyl hydrazine with either 2-hydroxyacetophenone (H2L1) or its para-substituted derivatives (H2L2–4) (general abbreviation H2L), in the presence of vanillin (Hvan) in equimolar ratio under aerobic conditions generating the mixed-ligand oxovanadium(V) complexes of the type [VVO(L)(van)], (1)(4) in good yield. All the complexes are diamagnetic and exhibit only ligand-to-metal charge transfer (l.m.c.t.) band near 510 nm in addition to intra-ligand (π → π*) transition band near 330 nm in CH2Cl2 solution. 1H-n.m.r. spectra of the complexes in CDCl3 solution indicate the presence of two isomeric forms [(1A), (1B); (2A), (2B); (3A), (3B) and (4A), (4B)] in different ratios, which is explained by the interchange of the two binding sites of van motif between its coordinated equatorial and axial positions. Complexes display two quasi-reversible one electron reduction peaks near +0.10 V and near +0.30 V versus s.c.e. in CH2Cl2 solution which are attributed to the successive reduction of VV→ VIV and the VIV→ VIII motifs, respectively. λmax (for l.m.c.t. transition), and the two reduction potential values (E 1/2)I (average of the first step anodic and first step cathodic peak potentials) and (E 1/2)II (average of the second step anodic and second step cathodic peak potentials) of the complexes, are found to be linearly related to the Hammett constants (σ) of the substituents in the aryloxy ring of the hydrazone ligands. λmax, (E 1/2)I and (E 1/2)II values show large dependence: dλmax/dσ = 37.29 nm, d(E 1/2)I/dσ = 0.21 V and d(E 1/2)II/dσ = 0.21 V, respectively, on σ.  相似文献   

16.
The solubility of boric acid [B] in LiCl, NaCl, KCl, RbCl, and CsCl was determined as a function of ionic strength (0–6 mol ⋅ kg−1) at 25 C. The results were examined using the Pitzer equation
where [B]0 is the concentration of boric acid in water and [B] in solution, γB is the activity coefficient, νi is the number of ions (i), λBc, λBa are parameters related to the interaction of boric acid with cation c and anion a, ζB-a−c is related to the interaction of boric acid with both cation and anion and m is the salt molality. The literature values for the solubility of boric acid in a number of other electrolytes were also examined using the same equation. The results for the 2νcλBc+2νaλBa term (equal to the salting coefficient k S) were examined in terms of the ionic interactions in the solutions. The solubility of boric acid in LiCl, NaCl, and KCl solutions is not a strong function of temperature and the results can be used over a limited temperature range (5–35 C). Boric acid is soluble in the order SO4 > NO3 and F > Cl > Br > I in common cation solutions. In common anion salt solutions, the order is Cs > Rb > K > Na > Li > H and Ba > Sr > Ca > Mg. The results were examined using correlations of k S with the volume properties of the ions. When direct measurements were not available, k S and ζB-c−a were estimated from known values of λBc and λBa.The values of λBc, λBa, and ζB-a−c can be used to estimate the boric acid activity coefficients γB and solubility [B] in natural mixed electrolyte solutions (seawater and brines) using the more general Pitzer equation
  相似文献   

17.
The inherent (in)determinacy implicit in the SU(m≥3)×S nG natural embedding aspects of (NMR) spin symmetry of clusters is investigated, as part of a multicolour modelling scheme, where the SU2-branching level meets the initial n(S n)=/G/ condition. We focus on correlative mappings derived from [λ]SA (self-associate) irreps for natural group embeddings and compare these with certain Yamanouchi-Gel'fand chain properties of S 10 Mathematical decompositions of Mλ simple S n-modules with (2≥p≥4)-branchings of λ⊵,λSA (for λ⊢N partitions of n) provide the initial insight into the monocluster spin (NP) physics of [2H]10, [11B]10 (S 10D 5), as aspects of (1,12)-(HC)2(11B)10 or (HC)2(2 11B10 carborane cage isotopomers. The questions raised are significant for their impact on CNP nuclear spin weighting of ro-vibrational spectra. The methods used are those of combinatorics-via-group actions, as physical S n-encodings applied to nuclear spin algebras. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
The ability of silver nanoparticles stabilized by cetyltrimethylammonium bromide (CTAB) to concentrate polycyclic aromatic hydrocarbons (PAHs) from aqueous solutions was shown. It was found that fixed PAH molecules are capable of acting as electronic energy donors and of generating sensibilized fluorescence of silver nanoparticles. It was shown by spectral-luminescent investigations of dilute PAH solutions (5 × 10−10−1 × 10−6 g/ml) in the presence of silver nanoparticles (∼0.7 vol %) that the concentration of PAH molecules from solutions occurs due to its sorption on hydrocarbon CTAB radicals in close contact to the surface of metallic silver. On the basis of the spectral data, the sorption isotherms were obtained and the values of extraction degree and partition coefficients for naphthalene, phenanthrene, anthracene, chrysene, pyrene, and 3,4-benzopyrene were calculated. It was found that the degree of extraction values of the investigated PAHs fall within the range of 73–98%, the partition coefficients (logD) ∼ 6, and the concentration coefficients ∼105.  相似文献   

19.
Viscosity B-coefficients for cesium chloride and lithium sulfate in methanol + water mixtures at 25 and 35 °C are reported. A general treatment of the quasi-thermodynamics of viscous flow of electrolyte solutions is described. ΔG 3 Θ (1→1′), the contribution made to the Gibbs energy of activation of the solution by the influence of the solute on the solvent, is a function of solute–solvent interactions only; but, ΔH 3 Θ (1→1′) and ΔS 3 Θ (1→1′) also reflect the solvent–solvent interactions. In aqueous solution all alkali-metal ions except Li+ are sterically unsaturated, having solvent co-ordination numbers n<n max , the maximum allowed sterically. Such complexes exchange molecules with the solvent more readily than saturated ones and have energy–reaction co-ordinate diagrams in forms that explain the negative B or ΔG 3 Θ (1→1′) values found in aqueous solution. Saturated complexes are the norm in non-aqueous solvents, and the ΔG 3 Θ (1→1′) values are determined mainly by the secondary solvation. Behavior in mixed solvents reflects the transition from aqueous to non-aqueous behavior across the range of solvent composition.  相似文献   

20.
Equations were developed for the calculation of the first stoichiometric (molality scale) dissociation constant (K m1) of oxalic acid in buffer solutions containing oxalic acid, potassium hydrogen oxalate, and potassium chloride from the determined thermodynamic values of this dissociation constant (K a1) and the molalities of the components in the solutions. Similar equations were also developed for the second stoichiometric dissociation constant (K m2) of this acid in buffer solutions containing sodium or potassium hydrogen oxalate, oxalate and chloride. These equations apply at temperatures from 0 to 60 °C up to ionic strengths of 1.0 mol⋅kg−1 and they have been based on single-ion activity coefficient equations of the Hückel type. For the equations for K m1, the activity parameters of oxalate species and the K a1 values were determined at various temperatures from the Harned cell data of a recent tetroxalate buffer paper (Juusola et al., J. Chem. Eng. Data 52:973–976, 2007). By using the resulting equations for K m1, the activity parameters of oxalate species for K m2 and the K a2 values were then determined from the new Harned cell data and from those of Pinching and Bates (J. Res. Natl. Bur. Stand. (U.S.) 40:405–416, 1948) for solutions of sodium or potassium oxalates with NaCl or KCl. The resulting simple equations for calculation of K m1 and K m2 for oxalic acid were tested with all important thermodynamic data available in the literature for this purpose. The equations for ln (K a1) and ln (K a2) are of the form ln (K a)=a+b(t/°C)+c(t/°C)2. The coefficients for ln (K a1) are the following: a=−2.8737, b=0.000159, and c=−0.00009. The corresponding coefficients for ln (K a2) are −9.6563, −0.003059, and −0.000125, respectively. The new activity coefficient equations were used to evaluate the pH values of the tetroxalate buffer solution (i.e., of the 0.05 mol⋅kg−1 KH3C4O8 solution) for comparison with the pH values recommended by IUPAC at temperatures from 0 to 60 °C and to develop a new two-component oxalate pH buffer of 0.01 mol⋅kg−1 KHC2O4+0.05 mol⋅kg−1 Na2C2O4 for which pH values are given from 0 to 60  °C. Values of p(m H) calculated from these equations are tabulated for these buffers as well as for buffer solutions with KCl and KH3C4O8 as the major component and minor component, respectively. Tables of p(m H) are also presented for 0.001 mol⋅kg−1 KHC2O4+0.005 mol⋅kg−1 Na2C2O4 solutions in which KCl is the supporting electrolyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号