首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long term dynamics of a class of mechanical systems is investigated in a computationally efficient way. Due to geometric complexity, each structural component is first discretized by applying the finite element method. Frequently, this leads to models with a quite large number of degrees of freedom. In addition, the composite system may also possess nonlinear properties. The method applied overcomes these difficulties by imposing a multi-level substructuring procedure, based on the sparsity pattern of the stiffness matrix. This is necessary, since the number of the resulting equations of motion can be so high that the classical coordinate reduction methods become inefficient to apply. As a result, the original dimension of the complete system is substantially reduced. Subsequently, this allows the application of numerical methods which are efficient for predicting response of small scale systems. In particular, a systematic method is applied next, leading to direct determination of periodic steady state response of nonlinear models subjected to periodic excitation. An appropriate continuation scheme is also applied, leading to evaluation of complete branches of periodic solutions. In addition, the stability properties of the located motions are also determined. Finally, respresentative sets of numerical results are presented for an internal combustion car engine and a complete city bus model. Where possible, the accuracy and validity of the applied methodology is verified by comparison with results obtained for the original models. Moreover, emphasis is placed in comparing results obtained by employing the nonlinear or the corresponding linearized models.  相似文献   

2.
Linear and nonlinear dynamics of reciprocating engines   总被引:2,自引:0,他引:2  
In the first part of this study, dynamic models of single- and multi-cylinder reciprocating machines are presented, which may involve torsional flexibility in the crankshaft. These models take into account the dependence of the engine moment of inertia on the crankshaft rotation. In addition, both the driving and the resisting moments are expressed as functions of the crankshaft motion. This leads to dynamic models with equations of motion appearing in a strongly nonlinear form. Initially, an approximate analytical solution is presented for a linearized version of the equations of motion, by applying a suitable asymptotic method. This provides valuable insight into some aspects of the system dynamics. In the second part, numerical results are presented for linear and nonlinear engine models by applying appropriate methodologies, leading to direct determination of complete branches of steady-state response. These results illustrate the effect of the system parameters on its dynamics. Finally, some results are also presented in an effort to investigate the effect of engine misfire.  相似文献   

3.
In this study a new procedure for analysis of nonlinear dynamical systems with periodically varying parameters under critical conditions is presented through an application of the Liapunov-Floquet (L-F) transformation. The L-F transformation is obtained by computing the state transition matrix associated with the linear part of the problem. The elements of the state transition matrix are expressed in terms of Chebyshev polynomials in timet which is suitable for algebraic manipulations. Application of Floquet theory and the eigen-analysis of the state transition matrix at the end of one principal period provides the L-F transformation matrix in terms of the Chebyshev polynomials. Since this is a periodic matrix, the L-F transformation matrix has a Fourier representation. It is well known that such a transformation converts a linear periodic system into a linear time-invariant one. When applied to quasi-linear equations with periodic coefficients, a dynamically similar system is obtained whose linear part is time-invariant and the nonlinear part consists of coefficients which are periodic. Due to this property of the L-F transformation, a periodic orbit in original coordinates will have a fixed point representation in the transformed coordinates. In this study, the bifurcation analysis of the transformed equations, obtained after the application of the L-F transformation, is conducted by employingtime-dependent center manifold reduction andtime-dependent normal form theory. The above procedures are analogous to existing methods that are employed in the study of bifurcations of autonomous systems. For the two physical examples considered, the three generic codimension one bifurcations namely, Hopf, flip and fold bifurcations are analyzed. In the first example, the primary bifurcations of a parametrically excited single degree of freedom pendulum is studied. As a second example, a double inverted pendulum subjected to a periodic loading which undergoes Hopf or flip bifurcation is analyzed. The methodology is semi-analytic in nature and provides quantitative measure of stability when compared to point mappings method. Furthermore, the technique is applicable also to those systems where the periodic term of the linear part does not contain a small parameter which is certainly not the case with perturbation or averaging methods. The conclusions of the study are substantiated by numerical simulations. It is believed that analysis of this nature has been reported for the first time for this class of systems.  相似文献   

4.
A methodology is first presented for analyzing long time response of periodically exited nonlinear oscillators. Namely, a systematic procedure is employed for determining periodic steady state response, including harmonic and superharmonic components. The stability analysis of the located periodic motions is also performed, utilizing results of Froquet theory. This methodology is then applied to a special class of two degree of freedom nonlinear oscillators, subjected to harmonic excitation. The numberical results presented in the second part of this study illustrate effects caused by the interaction of the modes as well as effects of the nonlinearities on the steady state response of these oscillators. In addition, sequences of bifurcations are analyzed for softening systems, leading to unbounded response of the model examined. Finally, the importance of higher harmonics on the response of systems with strongly nonlinear characteristics is investigated.  相似文献   

5.
Fast and accurate simulation of mechanical structures with complex geometry requires application of the finite element method. This leads frequently to models with a relatively large number of degrees of freedom, which may also possess non-linear properties. Things become more complicated for systems involving unilateral contact and friction. In classical structural dynamics approaches, such constraints are usually modeled by special contact elements. The characteristics of these elements must be selected in a delicate way, but even so the success of these methods cannot be guaranteed. This study presents a numerical methodology, which is suitable for determining dynamic response of large scale finite element models of mechanical systems with multiple unilateral constraints. The method developed is based on a proper combination of results from two classes of direct integration methodologies. The first one includes standard methods employed in determining dynamic response of structural models possessing smooth non-linearities. The second class of methods includes specialized methodologies that simulate the response of dynamical systems with unilateral constraints. The validity and effectiveness of the methodology developed is illustrated by numerical results.  相似文献   

6.
In this paper, a dynamical problem is considered for an incompressible hyperelastic solid sphere composed of the classical isotropic neo-Hookean material, where the sphere is subjected to a class of periodic step radial tensile loads on its surface. A second-order non-linear ordinary differential equation that describes cavity formation and motion is proposed. The qualitative properties of the solutions of the equation are examined. Correspondingly, under a prescribed constant dead-load, it is proved that a cavity forms in the sphere as the dead-load exceeds a certain critical value and the motion of the formed cavity presents a class of singular periodic oscillations. Under periodic step loads, the existence conditions for periodic oscillation of the formed cavity are determined by using the phase diagrams of the motion equation of cavity. In each section, numerical examples are also carried out.  相似文献   

7.
高建平  方宗德 《力学学报》2000,32(4):502-506
给出两种形式的微分方程周期求解方法,这两种方法对称处理奇异的非线性特征值问题有独特的能力,为具有系统参数的非线性动力系统在整个系统参数范围内的动态特性分析提供了有效的方法。  相似文献   

8.
This two-part paper deals with impact interaction of ships with one-sided ice barrier during roll dynamics. The first part presents analytical and numerical studies for the case of inelastic impact. An analytical model of a ship roll motion interacting with ice is developed based on Zhuravlev and Ivanov non-smooth coordinate transformations. These transformations have the advantage of converting the vibro-impact oscillator into an oscillator without barriers such that the corresponding equation of motion does not contain any impact term. Such approaches, however, account for the energy loss at impact times in different ways. The present work, in particular, demonstrates that the impact dynamics may have qualitatively different response characteristics to different dissipation models. The difference between localized and distributed equivalent damping approaches is discussed. Extensive numerical simulations are carried out for all initial conditions covered by the ship grazing orbit for different values of excitation amplitude and frequency of external wave roll moment. The basins of attraction of safe operation are obtained and reveal the coexistence of different response regimes such as non-impact periodic oscillations, modulation impact motion, period added impact oscillations, chaotic impact motion and rotational motion. The second part will consider experimental validations of predicted results.  相似文献   

9.
Natsiavas  S.  Verros  G. 《Nonlinear dynamics》1999,20(3):221-246
Dynamics of a class of strongly nonlinear single degree of freedom oscillators is investigated. Their common characteristic is that they possess piecewise linear damping properties, which can be expressed in a general asymmetric form. More specifically, the damping coefficient and a constant parameter appearing in the equation of motion are functions of the velocity direction. This class of oscillators is quite general and includes other important categories of mechanical systems as special cases, like systems with Coulomb friction. First, an analysis is presented for locating directly exact periodic responses of these oscillators to harmonic excitation. Due to the presence of dry friction, these responses may involve intervals where the oscillator is stuck temporarily. Then, an appropriate stability analysis is also presented together with some quite general bifurcation results. In the second part of the work, this analysis is applied to several example systems with piecewise linear damping, in order to reveal the most important aspects of their dynamics. Initially, systems with symmetric characteristics are examined, for which the periodic response is found to be symmetric or asymmetric. Then, dynamical systems with asymmetric damping characteristics are also examined. In all cases, emphasis is placed on investigating the low forcing frequency ranges, where interesting dynamics is noticed. The analytical predictions are complemented with results obtained by proper integration of the equation of motion, which among other responses reveal the existence of quasiperiodic, chaotic and unbounded motions.  相似文献   

10.
Goudas  I.  Stavrakis  I.  Natsiavas  S. 《Nonlinear dynamics》2004,35(3):205-227
Transient and steady state dynamic response of a class of slider-crank mechanisms is investigated. Specifically, the class of mechanisms examined involves rigid members but compliant supporting bearings. Moreover, the mechanisms are subjected to non-ideal forcing. Namely, both the driving and the resisting loads are expressed as a function of the angular coordinate describing the crank rotation. First, an appropriate set of equations of motion is derived by applying Lagrange's equations. These equations are strongly nonlinear due to the large rigid body rotation of the crank and the connecting rod, as well as due to the nonlinearities associated with the bearing action and the form of the driving and the resisting loads. Consequently, the dynamics of the resulting dynamical system is examined by solving the equations of motion numerically. More specifically, transient response is captured by direct integration, while determination of complete branches of steady state response is achieved by applying appropriate numerical methodologies. Initially, mechanisms whose crankshaft is supported by bearings with rolling elements and linear stiffness characteristics are examined. Then, numerical results are presented for rolling element bearings with nonlinear stiffness characteristics. Finally, the study is focused on mechanisms supported by hydrodynamic bearings. In all cases, the attention is focused on investigating the influence of the system parameters on its dynamics. Moreover, models with constant crank angular velocity are first analysed, since they provide valuable insight into some aspects of the system dynamics. Eventually, the emphasis is shifted to the general case of non-ideal forcing, originating from the dependence of the driving and the resisting moments on the crankshaft motion.  相似文献   

11.
The present work investigates the performance of two systematic methodologies leading to hybrid modeling of complex mechanical systems. This is done by applying numerical methods in determining the equations of motion of some of the substructures of large order mechanical systems, while the dynamic characteristics of the remaining components are determined through the application of appropriate experimental procedures. In their simplest version, the models examined are assumed to possess linear characteristics. For such systems, it is possible to apply several hybrid methodologies. Here, the first of the methods selected is performed in the frequency domain, while the second method has its roots and foundation in time domain analysis. Originally, the accuracy and effectiveness of these methodologies is illustrated by numerical results obtained for two complex mechanical models, where the equations of motion of each substructure are first set up by applying the finite element method. Then, the equations of motion of the complete system are derived and their dimension is reduced substantially, so that the new model is sufficiently accurate up to a prespecified level of forcing frequencies. The formulation is developed in a general way, so that application of other methods, including experimental techniques, is equally valid. This is actually performed in the final part of this study, where experimental results are employed in conjunction with numerical results in order to predict the dynamic response of a mechanical structure possessing a linear substructure with high modal density, supported on four substructures with strongly nonlinear characteristics.  相似文献   

12.
In this paper, the dynamical cavitation behavior is analyzed for a sphere composed of a class of transversely isotropic incompressible hyper-elastic materials, where there is a pre-existing micro-void in the interior of the sphere. A second-order non-linear ordinary differential equation that governs the motion of the initial micro-void is obtained by using the boundary conditions. On analyzing the qualitative properties of the solutions of the differential equation, some interesting conclusions are proposed. It is proved that the number of equilibrium points of the differential equation depends on the values of the material parameters, and that the phase diagrams of the equation are closed, smooth and convex trajectories. For any prescribed surface tensile dead-loads, the motion of the initial micro-void undergoes a non-linear periodic oscillation. The dependence of the periodic motion of the initial micro-void on material parameters and the radius of the initial micro-void is examined, and numerical results are also provided. It is worth pointing out that the conclusions in this paper can be used to describe approximately the physical implications of the dynamical formation of a cavity in the sphere.  相似文献   

13.
This study investigates issues related to parametric identification and health monitoring of dynamical systems with non-linear characteristics. In the first part, a gear-pair system supported on bearings with rolling elements is selected as an example mechanical model and the corresponding equations of motion are set up. This model possesses strongly non-linear characteristics, accounting for gear backlash and bearing stiffness non-linearities. Then, the basic steps of the parametric identification and fault detection procedure employed are outlined briefly. In particular, a Bayesian statistical framework is adopted in order to estimate the optimal values of the gear and bearing model parameters. This is achieved by combining experimental information from vibration measurements with theoretical information built into a parametric mathematical model of the system. In the second part of the study, characteristic numerical results are presented. First, based on the effect of the system parameters on its dynamics, a solid basis is created for explaining some of the peculiar results obtained by applying classical gradient-based optimization methodologies for the strongly non-linear system examined. Some serious difficulties, associated with the existence of irregular response or the coexistence of multiple motions, are first pointed out. A solution to some of these problems, through the application of a suitable genetic algorithm, is then presented. Special problems, related to more classical identification issues associated with the presence of measurement noise and model error, are also investigated.  相似文献   

14.
Verros  G.  Natsiavas  S. 《Nonlinear dynamics》1998,17(4):325-346
An analysis is presented on the dynamics of asymmetric self-excited oscillators with one-to-two internal resonance. The essential behavior of these oscillators is described by a two degree of freedom system, with equations of motion involving quadratic nonlinearities. In addition, the oscillators are under the action of constant external loads. When the nonlinearities are weak, the application of an appropriate perturbation approach leads to a set of slow-flow equations, governing the amplitudes and phases of approximate motions of the system. These equations are shown to possess two different solution types, generically, corresponding to static or periodic steady-state responses of the class of oscillators examined. After complementing the analytical part of the work with a method of determining the stability properties of these responses, numerical results are presented for an example mechanical system. Firstly, a series of characteristic response diagrams is obtained, illustrating the effect of the technical parameters on the steady-state response. Then results determined by the application of direct numerical integration techniques are presented. These results demonstrate the existence of other types of self-excited responses, including periodically-modulated, chaotic, and unbounded motions.  相似文献   

15.
Periodic vibro-impacts and their stability of a dual component system   总被引:11,自引:0,他引:11  
The coexisting periodic impacting motions and their multiplicity of a kind of dual component systems under harmonic excitation are analytically derived. The stability condition of a periodic impacting motion is given by analyzing the propagation of small, arbitrary perturbation from that motion. In numerical simulations, the periodic impacting motions are classified according to the system states before and after an impact. The numerical results show that there exist many types of vibro-impacts and the bifurcation of periodic vibro-impacts is not smooth. Project supported in part by National Natural Science Foundation of China under the grant 59572024 and in part by Trans-century Training Program Foundation for the Talents by the State Education Commission of China  相似文献   

16.
In this paper, we analyzed the dynamic properties of a simple walking model of a biped robot driven by a rhythmic signal from an oscillator. The oscillator receives no sensory feedback and the rhythmic signal is an open loop. The simple model consists of a hip and two legs that are connected at the hip. The leg motion is generated by a rhythmic signal. In particular, we analytically examined the stability of a periodic walking motion. We obtained approximate periodic solutions and the Jacobian matrix of a Poincaré map by the power-series expansion using a small parameter. Although the analysis was inconclusive when we used only the first order expansion, by employing the second order expansion it clarified the stability, revealing that the periodic walking motion is asymptotically stable and the simple model possesses self-stability as an inherent dynamic characteristic in walking. We also clarified the stability region with respect to model parameters such as mass ratio and walking speed.  相似文献   

17.
In this work, some new results are presented on the dynamics of a class of multibody mechanical systems, involving contact and friction. The main contribution refers to the development of a systematic, accurate and efficient method for detecting contact among the components of a system of solid bodies. For some simple geometries, this task is achieved by employing analytical means. For systems possessing components with complex geometric shapes a more involved numerical methodology is developed. In both cases, once a potential contact point is detected, the common tangent plane and normal vector are located and the penetration depth is calculated, leading to determination of the force arising between the contacting bodies. This information is then passed to a solver, providing the full dynamic response of the system. The validity and numerical efficiency of the methodology developed is first demonstrated by considering a number of examples with relatively small geometric complexity but large traditional value and interesting dynamic response. Some new results are obtained and presented on the dynamics of these systems. Finally, the same methodology is also tested in a more complicated and demanding mechanical application.  相似文献   

18.
In Part I of this study, generalized mathematical models were developed to describe the motion of fluids in porous media. The second part of this study solved the problem of fluid flow in small channels of a periodic elastic solid matrix at the pore scale numerically, and applied the volume-averaging technique to predict the macroscopic behavior of reservoirs. The numerical results demonstrated different macroscopic behavior of a porous medium due to cyclic excitation at various frequencies corresponding to the five separate characteristic macroscopic models identified in Part I. The results emphasize the need to use an appropriate model to interpret the corresponding responses of a saturated porous medium.  相似文献   

19.
A numerical solution methodology is proposed herein to investigate the nonlinear forced vibrations of Euler–Bernoulli beams with different boundary conditions around the buckled configurations. By introducing a set of differential and integral matrix operators, the nonlinear integro-differential equation that governs the buckling of beams is discretized and then solved using the pseudo-arc-length method. The discretized governing equation of free vibration around the buckled configurations is also solved as an eigenvalue problem after imposing the boundary conditions and some complicated matrix manipulations. To study forced and nonlinear vibrations that take place around a buckled configuration, a Galerkin-based numerical method is applied to reduce the partial integro-differential equation into a time-varying ordinary differential equation of Duffing type. The Duffing equation is then discretized using time differential matrix operators, which are defined based on the derivatives of a periodic base function. Finally, for any given magnitude of axial load, the pseudo -arc-length method is used to obtain the nonlinear frequencies of buckled beams. The effects of axial load on the free vibration, nonlinear, and forced vibrations of beams in both prebuckling and postbuckling domains for the lowest three vibration modes are analyzed. This study shows that the nonlinear response of beams subjected to periodic excitation is complex in the postbuckling domain. For example, the type of boundary conditions significantly affects the nonlinear response of the postbuckled beams.  相似文献   

20.
提出多自由度周期参激系统稳定性的数值直接法。通过将扰动方程表示成状态方程形式,再根据Flo-quet理论将扰动解表示成指数特征分量与周期分量之积,并将其周期分量与系统周期系数展成Fourier级数,导出一系列代数方程,建立矩阵特征值问题,从而由数值求解特征值可直接确定参激系统的稳定性。该方法可用于一般周期参激阻尼系统,特征值矩阵不含逆子阵。应用于斜拉索在支座周期运动激励下的参激振动不稳定性分析,数值结果表明该方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号