首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Z-scan fluorescence correlation spectroscopy (FCS) is employed to characterize the interaction between arenicin-1 and supported lipid bilayers (SLBs) of different compositions. Lipid analogue C8-BODIPY 500/510C5-HPC and ATTO 465 labelled arenicin-1 are used to detect changes in lipid and peptide diffusion upon addition of unlabelled arenicin-1 to SLBs. Arenicin-1 decreases lipid mobility in negatively charged SLBs. According to diffusion law analysis, microdomains of significantly lower lipid mobility are formed. The analysis of peptide FCS data confirms the presence of microdomains for anionic SLBs. No indications of microdomain formation are detected in SLBs composed purely of zwitterionic lipids. Additionally, our FCS results imply that arenicin-1 exists in the form of oligomers and/or aggregates when interacting with membranes of both compositions.  相似文献   

2.
The fluorescence recovery after photobleaching (FRAP) method and the fluorescence correlation spectroscopy (FCS) have been applied on suspensions of highly charged colloidal spheres with a small content of rod-shaped tobacco mosaic virus (TMV) particles. Since these methods only determine the self-diffusion coefficient of the fluorescently labeled species, D(S) of the rods and the spheres could independently be measured. The ionic strength of the dispersion medium has been varied to measure self-diffusion of rods and spheres in dependence on the degree of order of the matrix spheres. In contrast to FRAP, which allows the determination of the long-time self-diffusion coefficient D(S) (L), FCS measures self-diffusion on a shorter time scale. Thus a comparison of the results that were obtained by FCS and FRAP, in combination with Brownian Dynamics simulations, gives insight into the time dependence of the self-diffusion coefficient of an interacting colloidal system. As the mean interparticle distance of the matrix is of the same order of magnitude as the length of a TMV rod, the rotational motion is influenced by the assembly of spheres around a TMV particle. Since FCS is sensitive both to translational and rotational motion, whereas FRAP, which probes the diffusion at much larger length scales, is only sensitive to the translational motion of TMV, the comparison of diffusion coefficients measured employing FRAP and FCS can give some insights in the rotational diffusion: the experimental data indicate a slowing down of the rotational motion of a TMV rod with increasing structural order of the matrix spheres.  相似文献   

3.
4.
The diffusion coefficients of nine fluorescently labeled antibodies, antibody fragments, and antibody complexes have been measured in solution very close to supported planar membranes by using total internal reflection with fluorescence correlation spectroscopy (TIR-FCS). The hydrodynamic radii (3-24 nm) of the nine antibody types were determined by comparing literature values with bulk diffusion coefficients measured by spot FCS. The diffusion coefficients very near membranes decreased significantly with molecular size, and the size dependence was greater than that predicted to occur in bulk solution. The observation that membrane surfaces slow the local diffusion coefficient of proteins in a size-dependent manner suggests that the primary effect is hydrodynamic as predicted for simple spheres diffusing close to planar walls. The TIR-FCS data are consistent with predictions derived from hydrodynamic theory. This work illustrates one factor that could contribute to previously observed nonideal ligand-receptor kinetics at model and natural cell membranes.  相似文献   

5.
Fluorescence correlation spectroscopy (FCS) has become an important tool for measuring diffusion, concentration, and molecular interactions of cellular components. The interpretation of FCS data critically depends on the measurement set-up. Here, we present a rigorous theory of FCS based on exact wave-optical calculations. Six of the most important optical and photophysical factors that influence FCS are studied: fluorescence anisotropy, cover-slide thickness, refractive index of the sample, laser-beam geometry, optical saturation, and pinhole adjustment. Our theoretical framework represents a general attempt to link all relevant parameters of the experimental set-up with the measured correlation function.  相似文献   

6.
The exonucleolytic degradation of high-density labeled DNA by exonuclease III was monitored using two-color fluorescence correlation spectroscopy (FCS). One strand of the double stranded template DNA was labeled on either one or two base types and additionally at one end via a 5' Cy5 tagged primer. Exonucleolytic degradation was followed via the diffusion time, the brightness of the remaining DNA as well as the concentration of released labeled bases. We found a hydrolyzation rate of about 11 to 17 nucleotides per minute per enzyme (nt/min/enzyme) for high-density labeled DNA, which is by a factor of about 4 slower than for unlabeled DNA. The exonucleolytic degradation of a 488 base pair long double stranded DNA resulted in a short double stranded DNA segment of 112 ± 40 base pairs (bp) length with two single-stranded tails.  相似文献   

7.
Nanocontainers (NCs) were prepared from amphiphilic triblock copolymers, having an average molecular weight of around 8000 g/mol, by using previously published preparation methods consisting of dispersing the polymer in an aqueous buffer solution containing molecules for encapsulation. A small molecular weight fluorophore, sulforhodamine B, as well as the fluorescent protein avidin labeled with Alexa 488 were encapsulated, and the resulting nanocontainers were characterized using fluorescence correlation spectroscopy (FCS) and fluorescence cross-correlation spectroscopy (FCCS). Nanocontainer size determination by FCS is very robust and compares well with results obtained from photon correlation spectroscopy: the measured diameters of the polymeric nanocontainers vary between 140 and 172 nm. Encapsulation of fluorescent molecules was determined by evaluating the molecular brightness of nanocontainers with an encapsulated fluorescently labeled protein (avidin-Alexa 488). Results indicate that the number of encapsulated avidin-Alexa 488 molecules corresponds well with the initial concentration of the fluorescently labeled protein and the encapsulated volume. A nanocontainer binding assay was developed using biotinylated fluorescently labeled nanocontainers. Binding of biotinylated nanocontainers to fluorescently labeled streptavidin was followed by fluorescence cross-correlation spectroscopy. The intrinsic dissociation constant, K(d), of labeled streptavidin to the ligand-modified nanocontainers is 1.7 +/- 0.4 x 10(-8) M, and about 1921 +/- 357 molecules of labeled streptavidin are bound to each nanocontainer.  相似文献   

8.
Molecular diffusion in biological membranes is a determining factor in cell signaling and cell function. In the past few decades, three main fluorescence spectroscopy techniques have emerged that are capable of measuring molecular diffusion in artificial and biological membranes at very different concentration ranges and spatial resolutions. The widely used methods of fluorescence recovery after photobleaching (FRAP) and single‐particle tracking (SPT) can determine absolute diffusion coefficients at high (>100 μm?2) and very low surface concentrations (single‐molecule level), respectively. Fluorescence correlation spectroscopy (FCS), on the other hand, is well‐suited for the intermediate concentration range of about 0.1–100 μm?2. However, FCS in general requires calibration with a standard dye of known diffusion coefficient, and yields only relative measurements with respect to the calibration. A variant of FCS, z‐scan FCS, is calibration‐free for membrane measurements, but requires several experiments at different well‐controlled focusing positions. A recently established FCS method, electron‐multiplying charge‐coupled‐device‐based total internal reflection FCS (TIR‐FCS), referred to here as imaging TIR‐FCS (ITIR–FCS), is also independent of calibration standards, but to our knowledge no direct comparison between these different methods has been made. Herein, we seek to establish a comparison between FRAP, SPT, FCS, and ITIR–FCS by measuring the lateral diffusion coefficients in two model systems, namely, supported lipid bilayers and giant unilamellar vesicles.  相似文献   

9.
Using fluorescence correlation spectroscopy (FCS) we measure the translational diffusion coefficient of asphaltene molecules in toluene at extremely low concentrations (0.03-3.0 mg/L): where aggregation does not occur. We find that the translational diffusion coefficient of asphaltene molecules in toluene is about 0.35 x 10(-5) cm(2)/s at room temperature. This diffusion coefficient corresponds to a hydrodynamic radius of approximately 1 nm. These data confirm previously estimated size from rotational diffusion studied using fluorescence depolarization. The implication of this concurrence is that asphaltene molecular structures are monomeric, not polymeric.  相似文献   

10.
Fluorescence correlation spectroscopy (FCS) is a frequently applied technique that allows for the precise and sensitive analysis of molecular diffusion and interactions. However, the potential of FCS for in vitro or ex vivo studies has not been fully realized due in part to artifacts originating from autofluorescence (fluorescence of inherent components and fixative-induced fluorescence). Here, we propose the azadioxatriangulenium (ADOTA) dye as a solution to this problem. The lifetime of the ADOTA probe, about 19.4 ns, is much longer than most components of autofluorescence. Thus, it can be easily separated by time-correlated single-photon counting methods. Here, we demonstrate the suppression of autofluorescence in FCS using ADOTA-labeled hyaluronan macromolecules (HAs) with Rhodamine 123 added to simulate diffusing fluorescent background components. The emission spectrum and decay rate of Rhodamine 123 overlap with the usual sources of autofluorescence, and its diffusion behavior is well known. We show that the contributions from Rhodamine 123 can be eliminated by time gating or by fluorescence lifetime correlation spectroscopy (FLCS). While the pairing of ADOTA and time gating is an effective strategy for the removal of autofluorescence from fluorescence imaging, the loss of photons leads to erroneous concentration values with FCS. On the other hand, FLCS eliminates autofluorescence without such errors. We then show that both time gating and FLCS may be used successfully with ADOTA-labeled HA to detect the presence of hyaluronidase, the overexpression of which has been observed in many types of cancer.  相似文献   

11.
The method of histograms is applied to the determination of polydispersity of particles and molecules in solution from fluorescence correlation spectroscopy (FCS) data. This is an ill-posed problem, which can be overcome by using a common strategy for imposed regularization and constraint conditions. The method developed for evaluating the polydispersity is tested on both computer-generated correlation curves and real FCS data. The results obtained show that FCS measurements can be successfully used for the determination of polydispersity of suspensions, with an efficiency comparable to that of photon correlation spectroscopy (PCS). The advantage of FCS, however, is its better sensitivity to small particles (size <50 nm) and molecules in dilute solutions, as well as its better selectivity. The usefulness of FCS for environmental chemistry is discussed with regard to the obtained results. Copyright 1999 Academic Press.  相似文献   

12.
We have studied the fluorescence properties and diffusion behaviors of gold nanoparticles (GNPs) in solution by using fluorescence correlation spectroscopy (FCS) at single molecule level. The GNPs display a high photo-saturation feature. Under illumination with strong laser light, they display higher brightness per particle (BPP) despite their low quantum yields. Based on the unique fluorescence properties and diffusion behaviors of GNPs, we have developed a sensitive and homogenous thrombin assay. It is based on a sandwich strategy and is making use of GNPs to which two different aptamers are conjugated. When the differently aptamer-labeled GNPs are mixed with solutions containing thrombin, the affinity reaction causes the GNPs to form dimers or oligomers. This leads to an increase in the diffusion time of the GNPs in the detection volume that is seen in FCS. The FCS method enables sensitive detection of the change in the characteristic diffusion time of the GNPs before and after the affinity reaction. Quantitative analysis of thrombin is based on the measurement of the change in the diffusion time. Under optimal conditions, the calibration plot is linear in the 0.5 nM to 110 nM thrombin concentration range, and the detection limit is 0.5 nM. The method was successfully applied to the direct determination of thrombin in human plasma.
Figure
On the basis of fluorescence correlation spectroscopy and recognition of aptamers, a new, sensitive and homogenous method for determination of thrombin in human plasma was developed using gold nanoparticles.  相似文献   

13.
We adapt fluorescence correlation spectroscopy (FCS) formalism to the studies of the dynamics of semiflexible polymers and derive expressions relating FCS correlation function to the longitudinal and transverse mean-square displacements of polymer segments. The obtained relations do not depend on any specific model of polymer dynamics. We use the derived expressions to measure the dynamics of actin filaments in two experimental situations: filaments labeled at distinct positions and homogeneously labeled filaments. Both approaches give consistent results and allow to measure the temporal dependence of the segmental mean-square displacement over almost five decades in time, from approximately 40 micros to approximately 2 s. These noninvasive measurements allow for a detailed quantitative comparison of the experimental data to the current theories of semiflexible polymer dynamics. Good quantitative agreement is found between the experimental results and theories explicitly accounting for the hydrodynamic interactions between polymer segments.  相似文献   

14.
Two‐photon excitation in fluorescence correlation spectroscopy (FCS) is often preferred to one‐photon excitation because of reduced bulk photobleaching and photodamage, and deeper penetration into scattering media, such as thick biological specimens. Two‐photon FCS, however, suffers from lower signal‐to‐noise ratios which are directly related to the lower molecular brightness achieved. We compare standard FCS with a fixed measurement volume with scanning FCS, where the measurement volume is scanned along a circular path. The experimental results show that photobleaching is the dominant cause of the effects observed at the high excitation powers necessary for good signal‐to‐noise ratios. Theoretical calculations assuming a nonuniform excitation intensity profile, and using the concept of generalized volume contrast, provide an explanation for the photobleaching effects commonly observed in two‐photon FCS at high excitation intensities, without having to assume optical saturation. Scanning alleviates these effects by spreading the photobleaching dose over a larger area, thereby reducing the depletion of fluorescent molecules in the measurement volume. These results, which facilitate understanding of the photobleaching in FCS and of the positive effects of scanning, are particularly important in studies involving the autocorrelation amplitude g(0), such as concentration measurements or binding studies using fluorescence cross‐correlation between two labeled species.  相似文献   

15.
Camera‐based fluorescence correlation spectroscopy (FCS) approaches allow the measurement of thousands of contiguous points yielding excellent statistics and details of sample structure. Imaging total internal reflection FCS (ITIR‐FCS) provides these measurements on lipid membranes. Herein, we determine the influence of the point spread function (PSF) of the optical system, the laser power used, and the time resolution of the camera on the accuracy of diffusion coefficient and concentration measurements. We demonstrate that the PSF can be accurately determined by ITIR‐FCS and that the laser power and time resolution can be varied over a wide range with limited influence on the measurement of the diffusion coefficient whereas the concentration measurements are sensitive to changes in the measurement parameters. One advantage of ITIR‐FCS is that the measurement of the PSF has to be performed only once for a given optical setup, in contrast to confocal FCS in which calibrations have to be performed at least once per measurement day. Using optimized experimental conditions we provide diffusion coefficients for over ten different lipid membranes consisting of one, two and three constituents, measured in over 200000 individual correlation functions. Using software binning and thus the inherent advantage of ITIR‐FCS of providing multiple observation areas in a single measurement we test the FCS diffusion law and show how they can be complemented by the local information provided by the difference in cross‐correlation functions (ΔCCF). With the determination of the PSF by ITIR‐FCS and the optimization of measurement conditions ITIR‐FCS becomes a calibration‐free method. This allows us to provide measurements of absolute diffusion coefficients for bilayers with different compositions, which were stable over many different bilayer preparations over a time of at least one year, using a single PSF calibration.  相似文献   

16.
CdSe/CdS/ZnS nanorods (NRs) of three aspect ratios were coated with phytochelatin-related peptides and studied using fluorescence correlation spectroscopy (FCS). Theoretical predictions of the NRs' rotational diffusion contribution to the correlation curves were experimentally confirmed. We monitored rotational and translational diffusion of NRs and extracted hydrodynamic radii from the extracted diffusion constants. Translational and rotational diffusion constants (D(trans) and D(rot)) for NRs were in good agreement with Tirado and Garcia de la Torre's as well as with Broersma's theories when accounting for the ligand dimensions. NRs fall in the size range where rotational diffusion can be monitored with higher sensitivity than translational diffusion due to a steeper length dependence, D(rot) approximately L(-)(3) versus D(trans) approximately L(-)(1). By titrating peptide-coated NRs with bovine serum albumin, we monitored (nonspecific) binding through rotational diffusion and showed that D(rot) is an advantageous observable for monitoring binding. Monitoring rotational diffusion of bioconjugated NRs using FCS might prove to be useful for observing binding and conformational dynamics in biological systems.  相似文献   

17.
A high-speed capillary electrophoresis mobility shift assay (CEMSA) for determining the binding ratios of DNA-protein complexes in solution is demonstrated. Single molecule fluorescence correlation spectroscopy (FCS) was used to resolve the bound and unbound fluorescently labeled DNA molecules as they flowed continuously through a fused silica capillary under the influence of an applied electric field. Resolution of the bound and unbound complexes was based on the difference in their electrophoretic mobilities, and was accomplished without the need to perform a chemical separation. Data sufficient to perform the analysis was acquired in less than 10 s, compared to the minutes that are normally needed to carry out such measurement via CE separation. The binding ratios were determined with 5 to 10% precision and agreed with the results obtained by CE separation within experimental error. The resolution of the CEMSA based FCS analysis (CEMSA-FCS) was significantly higher than for the analysis performed by conventional diffusional FCS, due to the higher mass sensitivity of the electrophoretic mobility compared to the translational diffusion coefficient. Fluorescently labeled 39-mer single stranded DNA (ssDNA) and the single stranded binding protein (SSB) from Escherichia coli was used as the model system. The dissociation constant of the ssDNA-SSB complex was estimated to be approximately 2 nM based on the CEMSA-FCS analysis.  相似文献   

18.
Fluorescence correlation spectroscopy (FCS) is being applied increasingly to study diffusion and interactions of fluorescently labeled macromolecules in complex biological systems. Fluctuations in detected fluorescence, deltaF(t), are expressed as time-correlation functions, G(tau), and photon-count histograms, P(k;DeltaT). Here, we developed a generalized simulation approach to compute G(tau) and P(k;DeltaT) for complex systems with arbitrary geometry, photophysics, diffusion, and macromolecular interactions. G(tau) and P(k;DeltaT) were computed from deltaF(t) generated by a Brownian dynamics simulation of single-molecule trajectories followed by a Monte Carlo simulation of fluorophore excitation and detection statistics. Simulations were validated by comparing analytical and simulated G(tau) and P(k;DeltaT) for diffusion of noninteracting fluorophores in a three-dimensional Gaussian excitation and detection volume. Inclusion of photobleaching and triplet-state relaxation produced significant changes in G(tau) and P(k;DeltaT). Simulations of macromolecular interactions and complex diffusion were done, including transient fluorophore binding to an immobile matrix, cross-correlation analysis of interacting fluorophores, and anomalous sub- and superdiffusion. The computational method developed here is generally applicable for simulating FCS measurements on systems complicated by fluorophore interactions or molecular crowding, and experimental protocols for which G(tau) and P(k;DeltaT) cannot be computed analytically.  相似文献   

19.
The gelation process of poly-(N-isopropylacrylamide)-clay nanocomposite hydrogels (PNIPAAm-clay NC gels) was investigated by dynamic and static light scattering (DLS and SLS), as well as by fluorescence correlation spectroscopy (FCS). The photopolymerization method chosen for the radical polymerizing system ensured that, when the irradiation is removed, the reaction stopped immediately. Experiments showed that shortly before the gelation threshold is reached, no changes in the DLS autocorrelation functions appear, while the monomer conversion can be observed by 1H NMR spectroscopy. These results correspond to the formation of microparticles, in which the PNIPAAm chains are closely attached to the clay platelets. During the further polymerization process, clay clusters are developed before the sol-gel threshold is reached. FCS measurements were performed to obtain information on the motion of the clay platelets inside the NC gel. The DLS method gives only an average of the motions in the gel. In a time window between 10 micros and 1 s, the clay sheets labeled with Rhodamine B show no characteristic motions.  相似文献   

20.
Fluorescence correlation spectroscopy (FCS) measurements are widely used for determination of diffusion coefficients of lipids and proteins in biological membranes. In recent years, several variants of FCS have been introduced. However, a comprehensive comparison of these methods on identical systems has so far been lacking. In addition, there exist no consistent values of already determined diffusion coefficients for well-known or widely used membrane systems. This study aims to contribute to a better comparability of FCS experiments on membranes by determining the absolute diffusion coefficient of the fluorescent lipid analog 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine (DiD) in giant unilamellar vesicles (GUVs) made of dioleoylphosphatidylcholine (DOPC), which can in future studies be used as a reference value. For this purpose, five FCS variants, employing different calibration methods, were compared. Potential error sources for each particular FCS method and strategies to avoid them are discussed. The obtained absolute diffusion coefficients for DiD in DOPC were in good agreement for all investigated FCS variants. An average diffusion coefficient of D = 10.0 ± 0.4 μm(2) s(-1) at 23.5 ± 1.5 °C was obtained. The independent confirmation with different methods indicates that this value can be safely used for calibration purposes. Moreover, the comparability of the methods also in the case of slow diffusion was verified by measuring diffusion coefficients of DiD in GUVs consisting of DOPC and cholesterol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号