首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A semiclassical theory of superradiant scattering of light from a Bose-Einstein condensate of a dilute atomic gas is proposed. Choosing atomic states with definite values of the momenta as a basis, we derive a nonlinear Schrödinger equation. Its solutions describe the evolution of the scattered light intensity and of the populations of the coherent atomic states with different recoil momenta.  相似文献   

2.
The theory of superradiant scattering of light from a Bose-Einstein condensate of a dilute atomic gas, which was earlier proposed by one of the authors, is used to study the spectral-kinetic characteristics of scattered radiation and the evolution of populations of coherent atomic states.  相似文献   

3.
Pu H  Meystre P 《Physical review letters》2000,85(19):3987-3990
We present a scheme for creating quantum entangled atomic states through the coherent spin-exchange collision of a spinor Bose-Einstein condensate. The state generated possesses macroscopic Einstein-Podolsky-Rosen correlation and the fluctuation in one of its quasispin components vanishes. We show that an elongated condensate with large aspect ratio is most suitable for creating such a state.  相似文献   

4.
Mean field approximation treats only coherent aspects of the evolution of a Bose-Einstein condensate. However, in many experiments some atoms scatter out of the condensate. We study a semianalytic model of two counterpropagating atomic Gaussian wave packets incorporating the dynamics of incoherent scattering processes. Within the model we can treat processes of the elastic collision of atoms into the initially empty modes, and observe how, with growing occupation, the bosonic enhancement is slowly kicking in. A condition for the bosonic enhancement effect is found in terms of relevant parameters. Scattered atoms form a squeezed state. Not only are we able to calculate the dynamics of mode occupation, but also the full statistics of scattered atoms.  相似文献   

5.
We discuss the possibility of inhibiting three-body recombination in atomic Bose-Einstein condensates via the application of resonant 2pi laser pulses. These pulses result in the periodic change in the phase of the molecular state by pi, which leads to destructive interference between the decay amplitudes following successive pulses. We show that the decay rate can be reduced by several orders of magnitude under realistic conditions.  相似文献   

6.
The low temperature dynamics of a vortex in a trapped quasi-two-dimensional Bose-Einstein condensate are studied quantitatively. Precession of an off-centered vortex in a dimple trap, embedded in a weaker harmonic trap, leads to the emission of sound in a dipolar radiation pattern. Sound emission and reabsorption can be controlled by varying the depth of the dimple. In a shallow dimple, the power emitted is proportional to the vortex acceleration-squared over the precession frequency, whereas for a deep dimple, periodic sound reabsorption stabilizes the vortex against radiation-induced decay.  相似文献   

7.
Evolution of periodic matter waves in one-dimensional Bose-Einstein condensates with time-dependent scattering length is described. It is shown that variation of the effective nonlinearity is a powerful tool for controlled generation of bright and dark solitons starting with periodic waves.  相似文献   

8.
We investigate experimentally the effects of light assisted collisions on the coherence between momentum states in Bose-Einstein condensates. The onset of superradiant Rayleigh scattering serves as a sensitive monitor for matter-wave coherence. A subtle interplay of binary and collective effects leads to a profound asymmetry between the two sides of the atomic resonance and provides far bigger coherence loss rates for a condensate bathed in blue detuned light than previously estimated. We present a simplified quantitative model containing the essential physics to explain our experimental data and point at a new experimental route to study strongly coupled light matter systems.  相似文献   

9.
We discuss the effect of inter-atoms interactions on the condensation temperature T c of an atomic laboratory trapped Bose-Einstein condensate. We show that, in the mean-field Hartree-Fock and semiclassical approximations, interactions produce a shift Δ T c /T c 0b 1(a T c ) + b 2(a T c )2 + ψ[a / λ T c ] with a the s-wave scattering length, λ T the thermal wavelength and ψ[a / λ T c ] a non-analytic function such that ψ[0] = ψ′[0] = ψ′′[0] = 0 and |ψ′′′[0]| = ∞. Therefore, with no more assumptions than Hartree-Fock and semiclassical approximations, interaction effecs are perturbative to second order in a / λ T c and the expected non-perturbativity of physical quantities at critical temperature appears only to third order. We compare this finding with different results by other authors, which are based on more than the Hartree-Fock and semiclassical approximations. Moreover, we obtain an analytical estimation for b 2 ? 18.8 which improves a previous numerical result. We also discuss how the discrepancy between b 2 and the empirical value of b 2 = 46 ± 5 may be explained with no need to resort to beyond-mean field effects.  相似文献   

10.
Motivated by recent experimental observations, we study theoretically multiple bright solitary waves of trapped Bose-Einstein condensates. Through variational and numerical analyses, we determine the threshold for collapse of these states. Under π-phase differences between adjacent waves, we show that the experimental states lie consistently at the threshold for collapse, where the corresponding in-phase states are highly unstable. Following the observation of two long-lived solitary waves in a trap, we perform detailed three-dimensional simulations which confirm that in-phase waves undergo collapse while a π-phase difference preserves the long-lived dynamics and gives excellent quantitative agreement with experiment. Furthermore, intermediate phase differences lead to the growth of population asymmetries between the waves, which ultimately triggers collapse.  相似文献   

11.
A dark soliton oscillating in an elongated harmonically confined atomic Bose-Einstein condensate continuously exchanges energy with the sound field. Periodic optical paddles are employed to controllably enhance the sound density and transfer energy to the soliton, analogous to parametric driving. In the absence of damping, the amplitude of the soliton oscillations can be dramatically reduced, whereas with damping, a driven soliton equilibrates as a stable soliton with lower energy, thereby extending the soliton lifetime up to the lifetime of the condensate.  相似文献   

12.
G. Mazzarella 《Physics letters. A》2009,373(48):4434-4437
We study triaxial bright solitons made of attractive Bose-condensed atoms characterized by the absence of confinement in the longitudinal axial direction but trapped by an anisotropic harmonic potential in the transverse plane. By numerically solving the three-dimensional Gross-Pitaevskii equation we investigate the effect of the transverse trap anisotropy on the critical interaction strength above which there is the collapse of the condensate. The comparison with previous predictions [A. Gammal, L. Tomio, T. Frederico, Phys. Rev. A 66 (2002) 043619] shows significant differences for large anisotropies.  相似文献   

13.
The chaotic coherent atomic tunneling between two periodically driven and weakly coupled Bose-Einstein condensates has been investigated. The perturbed correction to the homoclinic orbit is constructed and its boundedness conditions are established that contain the Melnikov criterion for the onset of chaos. We analytically reveal that the chaotic coherent atomic tunneling is deterministic but not predictable. Our numerical calculation shows good agreement with the analytical result and exhibits nonphysically numerical instability. By adjusting the initial conditions, we propose a method to control the unboundedness, which leads the quantum coherent atomic tunneling to predictable periodical oscillation.  相似文献   

14.
A multimode model of the superradiant Rayleigh scattering of light by the Bose-Einstein condensate of rarefied gases is proposed. A limiting transition to the widely used mean-field model is considered. The initial (linear) stage of the scattering process is considered with neglect of the diffraction in the multimode representation. A dependence of the order and number of the angular atomic modes on the parameters of the problem is determined.  相似文献   

15.
We present a detailed, realistic proposal and analysis of the implementation of a cold atom deflector using time-dependent far off-resonance optical guides. An analytical model and numerical simulations are used to illustrate its characteristics when applied to both non-degenerate atomic ensembles and to Bose-Einstein condensates. Using for all relevant parameters values that are achieved with present technology, we show that it is possible to deflect almost entirely an ensemble of 87Rb atoms falling in the gravity field. We discuss the limits of this proposal, and illustrate its robustness against non-adiabatic transitions.  相似文献   

16.
刘晓威  张可烨 《物理学报》2017,66(16):160301-160301
操控原子玻色-爱因斯坦凝聚体在双势阱中的动力学通常是通过改变势阱深度来实现,本文提出了一种基于调节原子有效质量的控制方案,可以在不改变双阱势的前提下操控凝聚体的双阱动力学.利用双模近似,本文解析地导出了超冷原子在双阱势中的隧穿强度和相互作用强度对有效质量的依赖关系,并基于平均场近似数值模拟了在有效质量调节下的凝聚体动力学演化,展示了隧穿振荡和自束缚等典型的双阱动力学行为.此外,本文的研究还发现,借助负有效质量效应,这一方案甚至可以等效地实现对负散射长度原子凝聚体双阱动力学行为的操控.  相似文献   

17.
We show that "weak" elliptical deformation of an atomic Bose-Einstein condensate rotating at close to the quadrupole instability frequency leads to turbulence with a Kolmogorov energy spectrum. The turbulent state is produced by energy transfer to condensate fragments that are ejected by the quadrupole instability. This energy transfer is driven by breaking the twofold rotational symmetry of the condensate. Subsequently, vortex-sound interactions damp the turbulent state leading to the crystallization of a vortex lattice.  相似文献   

18.
A stability method is used to assess possible values of interspecies scattering lengths a12 in two-component Bose-Einstein condensates described within the Gross-Pitaevskii approximation. The technique, based on a recent stability analysis of solitonic excitations in two-component Bose-Einstein condensates, is applied to ninety combinations of atomic alkali pairs with given singlet and triplet intraspecies scattering lengths as input parameters. Results obtained for values of a12 are in a reasonable agreement with the few ones available in the literature and with those obtained from a Painlevé analysis of the coupled Gross-Pitaevskii equations.  相似文献   

19.
In the dynamics of condensed systems described by a nonconservative non-linear Schrödinger equation, we investigate numerically the role of atomic feeding and inelastic collisions where dipolar relaxation is the dominant process. By analyzing the range of possible values of the nonconservative parameters to have stable (or unstable) solutions, we verify that spatio-temporal chaos patterns, known for attractive two-body systems due to collapsing effects, can also occur in the repulsive case when the term corresponding to the linear atomic feeding dominates the nonconservative contributions.  相似文献   

20.
We investigate the matter rogue wave in Bose-Einstein condensates with attractive interatomic interaction analytically and numerically. Our results show that the formation of rogue wave is mainly due to the accumulation of energy and atoms toward to its central part; and the decay rate of atoms in unstable matter rogue wave can be effectively controlled by modulating the trapping frequency of external potential. The numerical simulation demonstrate that even a small periodic perturbation with small modulation frequency can induce the generation of a near-ideal matter rogue wave. We also give an experimental protocol to observe this phenomenon in Bose-Einstein condensates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号