首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The T1,2 ← S0 spectra of benzaldehydes have been studied as a function of the energy separation between the vibrationless levels. It is shown that the spectra are very complicated in the region of ΔE[T20(nπ*)-T10(ππ*)] = 250–400 cm−1, reflecting effective vibronic interferences between T20(0-0) and each of the ν3633 out-of-plane vibrational levels of T10(ππ*). The simulated spectra correspond to the observed spectra. In the case of T10 = 3* and T20 = 3ππ* the spectral change is not so drastic as in the reverse case loc. cit. because the optical intensity generally concentrates in the longest wavelength band, i.e., the origin band of the T1(nπ*) ← S0 transition. The simulation spectra are useful for interpretation of the absorption spectra in similar electronic structure systems of substituted benzaldehydes.  相似文献   

2.
Peng Li  Wai Yip Fan   《Chemical physics letters》2004,390(4-6):323-327
Tunable infrared diode laser absorption (TDLAS) and Fourier transform infrared absorption spectroscopies (FTIR) have been utilized to characterize the translational, rotational and vibrational distributions of CO in an acetone/argon DC plasma at total pressures ranging from 4 to 5 Torr and currents of 0.1–0.3 A. A broad vibrational distribution of CO was observed with gradually decreasing intensities from the fundamental band to v=12←11. When nitrogen was added to the plasma, the distribution is narrower, due to the efficient energy transfer between CO and N2 molecules. The measured translational temperature in such plasmas ranged from 400–550 K. The rotational distribution can generally be fitted to a Boltzmann distribution within each vibrational level although the rotational temperature is highest for the lowest vibrational quantum number.  相似文献   

3.
The conformation of N-glycoproteins and N-glycopeptides has been the subject of many spectroscopic studies over the past decades. However, except for some preliminary data, no detailed study on the vibrational spectroscopy of glycosylated peptides has been published until recently.

This paper reports FTIR spectroscopic properties in DMSO and TFE of the N-glycosylated cyclic peptides cyclo[Gly-Pro-Xxx(GlcNAc)-Gly-δ-Ava] 3a and 3b in comparison with data on the non-glycosylated parent peptides cyclo(Gly-Pro-Xxx-Gly-δ-Ava) 2a and 2b [a, Xxx = Asn; b, Xxx = Gln; δ-Ava = NH-(CH2)4-CO] and N-acetyl 2-acetamido-2-deoxy-β- -gluco pyranosylamine (GlcNAc-NHAc, 4). The assignment of amide I band frequencies to conformation is based on ROESY experiments and determination of the temperature coefficients in DMSO-d6 solution. (For the synthesis and NMR characterization of 2a and 3a see Ref. [19].)

Cyclic peptides are expected to adopt folded (β- and/or γ-turn) conformations which may be fixed by intramolecular H-bonding(s). A comparison of the temperature coefficients of the NH protons and amide I band frequencies and intensities suggests that in DMSO there is no significant difference in the backbone conformation and H-bond system of the N-glycosylated models and their parent cyclic peptides. The common feature of the backbone conformation of models 2 and 3 is the predominance of a 1 ← 4 (C10) H-bonded type II β-turn encompassing Pro-Xxx or Pro-Xxx(GlcNAc), respectively. The ROESY connectivities in the Asn(GlcNAc) model (3a) have not been found to reflect intramolecular H-bondings between the peptide and the sugar.

The unique feature of the FTIR spectra in DMSO of the cyclic models is the lack or weakness of low-frequency (< 1640 cm−1) amide I component bands. In TFE the amide I region of the FTIR spectra shows an increased number of components below 1650 cm−1 reflecting a mixture of open and H-bonded β- and γ-turn conformers.

Because of its destabilizing effect upon γ-turns and other weakly H-bonded structures, DMSO decreases the number of backbone conformers. DMSO also destroys side-chain-backbone H-bondings of type C7, C6 or C8. Possible ‘glyco’ C7 H-bondings in GlcNAc-NHAc (4) or in glycopeptides 3a and 3b cannot resist the effect of DMSO either.

The FTIR data in TFE of models 2–4 suggest that the acceptor amide group of strong C7 H-bondings in peptides and glycopeptides absorbs at 1630 ± 5 cm−1 and that of bifurcated H-bondings between 1600–1620 cm−1.  相似文献   


4.
The A 2Πu-X 2Πg electronic emission spectrum of I2+ has been recorded at a low rotational temperature in a crossed molecular beam/electron beam apparatus. Six vibrational sequences with five or more members have been assigned to progressions in ν′, giving ω′e = 122±8 cm−1, but a full vibrational analysis has not been possible. It is not known whether this is due to the relatively poor resolution (≈5 cm−1) at which the spectrum has been recorded or because the A 2Πu state is perturbed in one or both spin-orbit components. Existing data on the A state of I2+ are reviewed.  相似文献   

5.
The photophysics of jet-cooled N-methylpyrrole molecules following excitation to their first excited singlet state (the 1A2 state, arising from a 3s/σ*←π electron promotion) has been investigated by resonance enhanced multiphoton ionisation spectroscopy, by measurements of wavelength resolved ‘action’ spectra for forming CH3 photoproducts, and by velocity map imaging studies of these CH3 products (in their v = 0 and v2 = 1 vibrational levels). CH3 products are observed at all excitation wavelengths within the NMP absorption band. Direct dissociation on the 1A2 potential energy surface (PES) yields ‘fast’ CH3 fragments, with an average total kinetic energy release (TKER) of 6500 cm−1, but this product channel is only observed in a narrow wavelength range near the absorption band origin. All of the measured CH3 images also show a broad component, peaking at lower TKER (1700 cm−1); this component extends beneath the ‘fast’ feature in images recorded at wavelengths near the origin, and accounts for all of the CH3 products observed at shorter photolysis wavelengths. These products are attributed to decay of highly vibrationally excited ground state molecules formed by radiationless transfer from the 1A2 state. Similarities and differences with the results of previous studies of the H + pyrrolyl products arising in the UV photodissociation of pyrrole are discussed in terms of the likely nuclear motions on the relevant ground and excited PESs (along RN–CH3/RN–H), and the possible couplings between these surfaces. The present study confirms that the proposed model of 1πσ* state induced bond fission in heteroaromatic molecules [A.L. Sobolewski, W. Domcke, Chem. Phys. 259 (2000) 181] is also applicable to non-hydride substituted heteroaromatics, but that mass effects can have an important influence on the subsequent nuclear dynamics.  相似文献   

6.
The microwave spectrum of ethyl fluoroformate displays strong a-type R branch transitions from two rotameric forms. One species (extended form) has rotational constants A0 = 9191.3(9) MHz, B0 = 2112.61(1) MHz, C0 = 1756.73(1) MHz which are consistent with a syn-anti (τ1(OCOC) = 0°, r2(cocc) = 180°) planar heavy atom structure. The second species (compact form) has rotational constants A0 = 7760(3) MHz, B0 = 2388.38(4) MHz, C0 = 2102.47(3) MHz which are consistent with a syn-gauche1(ococ) = 0°, τ2(cocc) ˜ 90°) structure. The two conformational forms have approximately equal energy (0 ± 40 cm−1). Four vibrational satellites of the extended species have been analyzed yielding a torsional frequency around the O-ethyl bond of 70(10) cm−1. Three vibrational satellites attributed to the O-ethyl torsion of the compact species have been analyzed yielding a vibrational frequency of 90(10) cm−1. Approximate Fourier coefficients of a three term potential function for internal rotation about the O-ethyl bond have been determined. Vibrational satellites attributed to the first excited states of the O-ester torsion have been analyzed for both conformers. The torsional vibrational frequency around the O-ester bond is 110(15) cm−1 for the extended conformers and 120(20) cm−1 for the compact.  相似文献   

7.
The structural study of some γ-butyrolactones substituted (i) in position 2 (position ): C4H4O2Br2 (II) and C4H5O2R [R = Oφ (III); R = OCOφ (IV); R = OH (V); R = Br (VI); R = Cl (VII)] or (ii) in position 3 or 4 (β or β′): C4H5O2Cl (VIII and IX) has been carried out by using different techniques of physical chemistry. Crystallographic data analysis demonstrates that in the solid state, 2,2-dibromo-γ-butyrolactone, unlike the 2,2-diphenyl-γ-butyrolactone, adopts an “envelope” structure which is comparable to those of compounds (III) and (IV). Spectroscopic data relative to the methylene bending mode δ(CH2) are interpreted for the dissolved state in terms of rigid (III, IV, V, IX) or exchanging (VI, VII, VIII) “envelope” forms. For and β halogenated derivatives (VI, VII, VIII), quantitative analysis of infrared spectra shows a pseudo-axial predominance in apolar solvents, as found by application of the PCILO method. Interpretation of NMR spectra recorded at 250 MHz (III, IV, V, VI) confirms the data obtained by vibrational spectroscopy.  相似文献   

8.
A laser pulse-and-probe method has been used to determine the nascent vibrational populations in NO(v=0–4) and O2(v=6–11) formed in the thermal reaction: O(3P) + NO2 → O2(v) + NO(v). A frequency-tripled Nd: YAG laser is used to photolyse NO2, diluted tenfold in Ar, and laser-induced fluorescence spectroscopy in the NO A 2Σ+-X 2Π and O2 B 3Σu -X 3Σg electronic band system is used both to follow the kinetics of individual vibrational states and to determine the nascent vibrational distributions. The majority of the NO product is formed in v = 0 and the average vibrational yield is ≈ 4.6%. The O2 populations fall monotonically from v = 6 to 11 in a distribution close to what is expected on prior grounds. Based on a surprisal analysis, the average vibrational energy yield in O2 is ≈ 26%. The nature of the reaction dynamics is discussed.  相似文献   

9.
The continuous absorption spectrum of molecular bromine has been examined using laser induced photodissociation spectroscopy. In this technique, Br2 molecules are photolyzed using a flashlamp-pumped dye laser; the atomic products of the dissociation are then monitored by time-resolved resonance absorption spectroscopy in the vacuum ultraviolet. The relative absorptivities for the transitions B3Πo+u ← X1Σ+g and 1Π1u ← X1Σ+g have been obtained at 18350, 21010 and 22125 cm−1.  相似文献   

10.
The excited state geometries of the metal-metal quadruply bonded compounds Mo2X4(PMe3)4 (X = Cl, Br or I) have been studied by means of resonance Raman and absorption spectroscopy. A fit of the parameters of a simple theoretical model to the experimental data indicates that the metal-metal bond increases some 10 pm on excitation to the 1B2 (δδ*) state, whereas other geometric changes are small. Furthermore, the phenomenological lifetime factor of the excited state, Γ, is found to be dependent on the vibrational quantum number, ν, of this state.  相似文献   

11.
We have previously determined an analytical ab initio six-dimensional potential energy surface for the HCl dimer, and in the present paper we use this potential, with the HCl bond lengths held fixed, in a full (four-dimensional) close-coupling calculation to determine the energies of the lowest 24 vibrational states. These vibrational states involve the intermolecular stretch ν4, the trans-bend tunneling vibration ν5, and the torsion ν6. The highest of the 24 levels is the (ν4ν5ν6)=(111) state, for which we calculate an energy of 200 cm−1 above the (000) state. As well as determining tunneling energies up to 5ν5=183 cm−1, we determine ν4=49 cm−1, 2ν4=93 cm−1, 3ν4=134 cm−1, 4ν4=172 cm−1, ν6=137 cm−1 and ν46=178 cm−1, together with tunneling energies in all these states. Making allowance for the HCl stretching zero-point energy we determine the dissociation energy D0 as 390 cm−1 on this analytical surface. We determine that below 300 cm−1 there are 72 vibrational (J=K=0) states, and below dissociation there are 162 vibrational (J=K=0) states, for this potential surface.  相似文献   

12.
New measurements have been made of rate constants for the vibrational deactivation of N2(ν = 1) by CH4 in liquid Ar/liquid N2 mixtures. The ratio of the liquid phase rate constants, kL,M for the liquid mixture over kL,Ar for liquid argon solution, varies non-linearly with composition. The results imply a saturation effect which occurs when one solvent N2 molecule is present in the first solvation shell of the excited molecule. It is proposed that this is due to the formation of a N2(ν = 1) … N2 collision complex.  相似文献   

13.
A high-resolution emission spectrum of a low-pressure Ar-diluted CO + N2O → CO2 + N2 flame catalyzed by Na metal vapor has been obtained and examined for vibrational disequilibrium. Emission in the 1900-2400 cm−1 spectral region, which includes the fundamental and “hot” bands of CO, CO23), and N2O(ν3), was recorded with high resolution and the CO emission was analyzed in detail to determine vibrational and rotational temperatures which were found to be unequal, Tv = 2050°K and TR = 1100°K. An examination of vib-vib and vib-trans energy transfer mechanisms results in the conclusion that an excess of 14% of the chemical energy is preferentially deposited in the resonantly-coupled N2, CO, CO23), and N2O(ν3) vibrational modes. It is further observed that CO vibrational levels for ν > 4 are excessively populated, presumably due to quenching of Na*(3p) by CO; the flame is accompanied by intense Na D-line chemiluminescence.  相似文献   

14.
The fluorescence excitation spectrum, the MPI spectrum, and the absorption spectrum of acetylene due to the à 1Au← transition were observed in a gas and in a supersonic jet. A sudden decrease in the fluorescence quantum yield Φf was found above the V4 K2 (46339 cm−1) vibronic sublevel. The decrease is due to predissociation into C2H + H. AK and J dependence on Φf was also found.  相似文献   

15.
Medium-resolution spectra of the N2 b1Πu-X1Σg+ band system were recorded by 1 + 1 multiphoton ionization. In the spectra we found different linewidths for transitions to different vibrational levels in the b 1Πu state: Δν0 = 0.50 ± 0.05 cm−1, Δν1 = 0.28 ± 0.02 cm−1, Δν2 = 0.65 ± 0.06 cm−1, Δν3 = 3.2 ± 0.5 cm−1, Δν4 = 0.60 ± 0.07 cm−1, and Δν5 = 0.28 ± 0.02 cm−1. From these linewidths, predissociation lifetimes τν were obtained: τ0 = 16 ± 3 ps, τ1 > 150 ps, τ2 = 10 ± 2 ps, τ3 = 1.6 ± 0.3 ps, τ4 = 9 ± 2 ps, and τ5 > 150 ps. Band origins and rotational constants for the b 1Πuν = 0 and 1 levels were determined for the 14N2 and 14N15N molecules.  相似文献   

16.
IR and Raman spectra and static electronic and vibrational first hyperpolarisabilities, β, of the cyclopentadiene homologues C4H4XH2 (X=C, Si, Ge, Sn) have been calculated by conventional ab initio and DFT-B3LYP methods using Sadlej POL and correlation consistent Dunning basis sets to investigate on the role of the heteroatom on the response property. The pure vibrational contribution to β has been evaluated within the double harmonic oscillator approximation. A clear heavy atom effect was found in the vibrational frequencies and intensities localised on the XH2 and C–X–C fragments, which decrease and increase, respectively, as the size of the heteroatom increases. Both βe and βv show an increase along the series, the vibrational contribution to β being modest in cyclopentadiene, but substantial in metalloles, especially for silole, where it is about two times greater than the electronic counterpart. The βve ratio is strongly dependent on the basis set, decreasing as the quality of the basis set increases. Both βv and total βev values of the cyclopentadiene homologues are higher than the corresponding ones in the furan series, except for stannole and tellurophene which have close total βev values.  相似文献   

17.
The vibrational spectrum of Sb4O6 in the gas phase has been measured at 1000 K by high-temperature infrared spectroscopy. The four infrared-active absorption bands were observed at ν7 = 785.0 cm1, ν8 = 176.2 cm−1, ν9 = 292.4 cm−1 and ν10 = 415.6 cm−1. By combining these results with data on the molecular geometry and the infrared-inactive modes, as reported in the literature, the thermodynamic functions of Sb4O6 have been calculated.  相似文献   

18.
The microwave spectrum of isopropyl fluoroformate is characterized by intense a-type R-branch transitions from one conformational species. The rotational constants of the ground state, A0 = 4967.0(8) MHz, B0 = 1704.69(2) MHz, C0 = 1468.86(1) MHz and κ = −0.8651(2) are consistent with a τ1 (O=COC) = 0°, τ2(COCH) ˜35° structure. This structure can be viewed as a combination of the two conformational species found in ethyl fluoroformate. Two vibrational satellites having rotational constants A0 = 4963(5) MHz, B0 = 1694.11(7) MHz. C0 = 1471.43(4) MHz and A0=4998(6) MHz, B0 = 1705.21(7) MHz, C0 = 1471.10(4) MHz have been assigned.  相似文献   

19.
Large-basis-set calculations of near Hartree-Fock accuracy were performed on CO+(1σ-hole 2Σ+) and CO+)2σ-hole, 2Σ+); correlation energies for these systems and for CO were calculated using an atoms-in-molecule approach, relativistic energies and vibrational structure corrections were also considered. The results are: IP(CO, 1σ) = 542.4 (542.57) eV, IP(CO,2σ) = 297.0 (296.24) cV, Dc(CO, 1Σ+) = 10.8 (11.1) Ev, D3(CO+, 1σ, 2Σ+) = 11.9 eV, De(CO+, 2σ, 2Σ+) = 9.1 eV, where IP and De stand respectively for ionization potential and dissociation energy, and where the numbers in parentheses refer to the most recent experimental values. The electron transfers resulting from the ionization of inner-shell electrons are discussed. Finally a quantitative correlation is developed correlating absolute chemical shifts to charge densities. Agreement between the calculated values and those derived from the correlation is quite satisfactory.  相似文献   

20.
Accurate electric dipole moment functions have been calculated for the stretching vibrational coordinates of the linear molecules HCN, HNC, HCCF and HC3N by means of coupled cluster theory with single and double excitation operators plus a quasi-perturbative treatment of connected triples (CCSD(T)). Combining these with anharmonic stretching vibrational wave-functions absolute IR intensities for strecthing vibrational transitions up to high overtones are obtained. For HCN, excellent agreement with experiment is observed up to 7 ν1 + η3 at 23047 cm−1. HCCF and DCCF show unusual behavior, with the ν2 band with origin at 2239.2 cm−1 being strongest in HCCF and the ν1 band with origin at 2645.1 cm−1 being the most intense in DCCF. The Fermi resonance system 2ν32 of DCCF is analysed in detail. The calculated IR intensities of the stretching fundamentals of HC3N and DC3N, which are difficult to obtain with high accuracy, are in very good agreement with the existing experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号