首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By using steady state and time-resolved (laser flash photolysis and single photon counting) spectroscopic techniques the quenching of the lowest excited singlet (S1) state of 9-cyanoanthracene (9CNA) by the donors (quenchers) 2-methylindole (2MI) and 2-methylindoline (2MIN) in solvents of different polarity has been studied. Both the transient absorption, by laser flash photolysis technique, and photobleaching measurements were made at the ambient temperature both in non-polar n-heptane (NH) and highly polar acetonitrile (ACN) solvents. The photobleaching efficiency (alpha) was found to depend significantly on the polarity of surrounding solvents and also on the molecular structures of the quenchers. In NH the values of alpha are found to be larger than the corresponding values observed in ACN for both 2MI and 2MIN which possess highly reactive H atom bound to the heterocyclic N atom. Following the results obtained from the transient absorption spectra of the present donor-acceptor molecules in the different polarity solvents, a scheme describing the overall reaction mechanisms of the different photoreactions involved has been proposed. The probable causes for the changes observed in the mechanisms of the photoreactions involved in the cases of 2MI and 2MIN donors have been discussed in the light of their canonical structures.  相似文献   

2.
In view of the optimization of the laser cleaning techniques in the conservation of artworks, non-standard laser systems and specific intervention methodologies were devised on the basis of shadowgraphic and spectroscopic diagnostics analyses. Optimized cleaning procedures were achieved through on-line diagnostics that had the role to monitor and control the interaction process. The potential improvements of the laser cleaning treatment by integration of time-resolved shadowgraphy and plasma spectroscopy as on-line or off-line diagnostic techniques are discussed.  相似文献   

3.
Charge-transfer molecular crystals are structurally well-defined systems whose electron transfer dynamics can be studied using time-resolved spectroscopy. In this paper, five 1:1 complexes, consisting of 1,2,4,5-tetracyanobenzene as the electron acceptor and durene, 9-methylanthracene, naphthalene, phenanthrene, and pyrene as electron donors, are studied using time-resolved fluorescence and transient absorption in the diffuse reflectance geometry. Two different sample morphologies were studied: single crystals and powders prepared by pulverizing the crystals and diluting them with barium sulfate microparticles. Fluorescence lifetime and transient absorption measurements performed on the crystals and the powders yielded different results. The crystals typically exhibited long-lived monoexponential fluorescence decays, while the powders had shorter multiexponential decays. Exposure of both types of samples to high laser fluence was also shown to induce faster excited state decay dynamics as observed using fluorescence and diffuse reflectance. In addition to the more rapid decays, these molecular crystals exhibited relatively high photobleaching quantum yields on the order of 10(-4). Previous work that interpreted picosecond decays in the transient absorption as evidence for rapid recombination and charge dissociation should be re-evaluated based on the susceptibility of this class of compounds to mechanical and photochemical damage.  相似文献   

4.
This paper describes a new microfluidic platform for screening drugs and their dose response on the locomotion behavior of free living nematodes and parasitic nematodes. The system offers a higher sensitivity drug screening chip which employs a combination of existing and newly developed methods. Real-time observation of the entire drug application process (i.e. the innate pre-exposure locomotion, the transient response during drug exposure and the time-resolved, post-exposure behavior) at a single worm resolution is made possible. The chip enables the monitoring of four nematode parameters (number of worms responsive, number of worms leaving the drug well, average worm velocity and time until unresponsiveness). Each parameter generates an inherently different dose response; allowing for a higher resolution when screening for resistance. We expect this worm chip could be used as a robust cross species, cross drug platform. Existing nematode motility and migration assays do not offer this level of sophistication. The device comprises two principal components: behavioral microchannels to study nematode motility and a drug well for administering the dose and observing drug effects as a function of exposure time. The drug screening experiment can be described by three main steps: (i) 'pre-exposure study'- worms are inserted into the behavioral channels and their locomotion is characterized, (ii) 'dose exposure'- worms are guided from the behavioral microchannels into the drug well and held for a predefined time, during which time their transient response to the dose is characterized and (iii) 'post-exposure study'- worms are guided back into the behavioral microchannels where their locomotion (i.e. their time-resolved response to the dose) is characterized and compared to pre-exposure motility. The direction of nematodes' movement is reliably controlled by the application of an electric field within a defined range. Control experiments (e.g. in the absence of any drug) confirm that the applied electric fields do not affect the worms' motility or viability. We demonstrate the workability of the microfluidic platform on free living Caenorhabditis elegans (wild-type N2 and levamisole resistant ZZ15 lev-8) and parasitic Oesophagotomum dentatum (levamisole-sensitive, SENS and levamisole-resistant, LEVR) using levamisole (a well-studied anthelmintic) as the test drug. The proposed scheme of drug screening on a microfluidic device is expected to significantly improve the resolution, sensitivity and data throughput of in vivo testing, while offering new details on the transient and time-resolved exposure effects of new and existing anthelmintics.  相似文献   

5.
Triflusal is a platelet antiaggregant drug with photoallergic side effects. However, it is considered a prodrug since it is metabolized to 2-hydroxy-4-trifluoromethylbenzoic acid (HTB)--the pharmacologically active form. HTB was found to be photolabile under various conditions. Its major photodegradation pathway appears to be the nucleophilic attack at the trifluoromethyl moiety. The involvement of the triplet state in the photodegradation has been unequivocally proved by direct detection of this transient in laser flash photolysis and by quenching experiments with oxygen, cyclohexadiene and naphthalene. Finally, the photobinding of HTB to proteins such as bovine serum albumin has been demonstrated using ultraviolet-visible (UV-Vis) and fluorescence spectroscopy. Nucleophilic groups present in the protein appear to be responsible for the formation of covalent drug photoadducts, which is the first step involved in the photoallergy shown by triflusal.  相似文献   

6.
Abstract— Steady-state and time-resolved electron paramagnetic resonance (TREPR) experiments are described. Comparison of the TREPR continuous wave method to other time domain EPR techniques such as Fourier transform EPR (FT-EPR) is made, and the advantages and disadvantages of each are presented. The role played by several mechanisms of chemically induced dynamic electron spin polarization (CIDEP) in the appearance of the spectra is explained. The advantages of using higher frequency spectrometers than the standard X-band (9.5 GHz) are presented and discussed. Examples are presented that are relevant to organic photochemistry and electron donor-acceptor chemistry. The use of TREPR to study polymer photodegradation, polymer chain dynamics, free radical initiator chemistry and biradical spin exchange interactions is described. Emphasis is placed on magnetic field effects studied by multiple frequency TREPR in these systems. Finally, several future directions in the field are discussed in terms of new developments in microwave and magnetic field technology.  相似文献   

7.
8.
Determination of transient structures in light-induced processes is a challenging goal for time-resolved techniques. Such techniques are becoming successful in detecting ultrafast structural changes in molecules and do not require the presence of probe-like groups. Here, we demonstrate that TR-WAXS (Time-Resolved Wide Angle X-ray Scattering) can be successfully employed to study the photochemistry of cis-[Ru(bpy)(2)(py)(2)]Cl(2), a mononuclear ruthenium complex of interest in the field of photoactivatable anticancer agents. TR-WAXS is able to detect the release of a pyridine ligand and the coordination of a solvent molecule on a faster timescale than 800 ns of laser excitation. The direct measurement of the photodissociation of pyridine is a major advance in the field of time-resolved techniques allowing detection, for the first time, of the release of a multiatomic ligand formed by low Z atoms. These data demonstrate that TR-WAXS is a powerful technique for studying rapid ligand substitution processes involving photoactive metal complexes of biological interest.  相似文献   

9.
The ground- and excited-state species of acridine adsorbed on (NH(4))(2)SO(4), SiO(2), Al(2)O(3), and MgO surfaces were investigated in order to determine the precursor species and electronic states responsible for acridine photodegradation on particles serving as models of atmospheric particulate matter. The species present on each solid surface were characterized by comparing the steady-state absorption and fluorescence spectra, time-resolved fluorescence, and absorption measurements on acridine in solution with those corresponding to adsorbed acridine. On silica, the ground-state species present were hydrogen-bonded, neutral, and protonated, while on alumina hydrogen-bonded and neutral species were identified. A comparison of the protonated acridine absorption and emission intensities on silica and alumina with those observed for acridine in acidic water demonstrated that the emission on the surfaces is higher than expected. This was interpreted as resulting from photoprotolytic reactions on silica and alumina. For acridine adsorbed on ammonium sulfate, protonated acridine was the only adsorbed species identified. Since, at a similar ground-state absorbance, the fluorescence intensity of acridine on ammonium sulfate was smaller than for acridine in acidic water, the quenching of the excited state or a rapid photochemical reaction with the surface was proposed. On magnesium oxide, the presence of neutral and hydrogen-bonded acridine species were characterized from the two-component analysis of the fluorescence, the triplet-triplet absorption decay curves, and the time-resolved emission spectra at different time delays. As demonstrated in these studies, acridine adsorbed species and their decay pathways depend on the acidic properties of these models of atmospheric particulate matter. In addition, a comparison of the photodegradation rates of acridine on the different solids tested is presented and discussed in terms of the nature of the species and their decay pathways.  相似文献   

10.
The present work focuses on probing ultrafast charge migration after symmetry-breaking excitation using ultrashort laser pulses. LiCN is chosen as prototypical system because it can be oriented in the laboratory frame and it possesses optically-accessible charge transfer states at low energies. The charge migration is simulated within the hybrid time-dependent density functional theory/configuration interaction framework. Time-resolved electronic current densities and simulated time-resolved x-ray diffraction signals are used to unravel the mechanism of charge migration. Our simulations demonstrate that specific choices of laser polarization lead to a control over the symmetry of the induced charge migration. Moreover, time-resolved x-ray diffraction signals are shown to encode transient symmetry reduction at intermediate times.  相似文献   

11.
In this paper, we present a laser-induced photoacoustic study on the photostability of laser dye Coumarin 540 doped in PMMA matrix and modified by the incorporation of low-molecular weight additives. The dependence of photostability of the dye on various experimental conditions, such as nature of solvents, incident optical power and dye concentration, is investigated in detail. The activation rates for the bleaching process are calculated for different concentrations and they suggest the possibility of two distinct mechanisms responsible for photodegradation. Further, analysis of the data confirms the linear dependence of photodegradation on the intensity of incident radiation. The role of different externally influencing parameters, such as wavelength and modulation frequency of incident radiation, is also discussed.  相似文献   

12.
Kinetics and mechanism of the aerobic Riboflavin (Rf, vitamin B2) sensitized photodegradation of Phenylephrine (Phen), a phenolamine belonging to the sympathomimetic drugs family, has been studied in water, employing continuous photolysis, polarographic detection of oxygen uptake, steady-state and time-resolved fluorescence spectroscopy, time-resolved IR-phosphorescence and laser flash photolysis. Results indicate the formation of a weak dark complex Rf-Phen, with an apparent association constant of 5.5+/-0.5M(-1), only detectable at Phen concentrations much higher than those employed in the photochemical experiments. Under irradiation, an intricate mechanism of competitive reactions operates. Phen quenches excited singlet and triplet states of Rf, with rate constants of 3.33+/-0.08 and 1.60+/-0.03x10(9)M(-1)s(-1), respectively. With the sympathomimetic drug in a concentration similar to that of dissolved molecular oxygen in water, Phen and oxygen competitively quench triplet excited Rf, generating superoxide radical anion and singlet molecular oxygen (O2((1)Deltag)) by processes initiated by electron- and energy-transfer mechanisms respectively. As a global result, the photodegradation of the vitamin, a known process taking place from its excited triplet state, is retarded, whereas the phenolamine, practically unreactive towards these oxidative species, behaves as a highly efficient physical deactivator of O2((1)Deltag). The phenolamine structure in Phen appears as an excellent scavenger of activated oxygen species, comparatively superior, in kinetic terms, to some commercial phenolic antioxidants.  相似文献   

13.
时间分辨拉曼光谱研究一氧化氮与肌红蛋白的结合过程   总被引:1,自引:0,他引:1  
纳秒瞬态拉曼光谱技术是研究分子结构变化超快动态过程的重要实验手段之一.而肌红蛋白(Mb)与小分子配体的结合过程一直是人们研究的焦点.本文旨在利用纳秒瞬态拉曼光谱技术研究小分子配体NO与肌红蛋白结合的动力学过程.通过考察MbNO光解后产物脱氧肌红蛋白(DeoxyMb)与反应物MbNO的ν4特征振动峰的强度比值随激光激发功率的变化,阐述了利用纳秒瞬态拉曼光谱技术研究MbNO体系中NO与DeoxyMb结合过程的可行性.利用纳秒瞬态拉曼光谱技术,获得了与皮秒时间分辨拉曼和皮秒时间分辨吸收相一致的结合动力学实验结果.为研究其它复杂体系的超快结合动力学过程提供了一种新的思路.  相似文献   

14.
This article discusses the use of Raman spectroscopy, in concert with density functional theory, as a strategy for understanding excited-state structure in metal polypyridyl complexes. The first sections of the article discuss how one can use resonance Raman spectra of the ground-state molecule to understand the resonant Franck-Condon excited state. The theories behind these analyses are based on the sum-over-states and time-dependent approaches; a brief introduction to each of these methods is given. The use of density functional theory and its use in the determination of normal modes of vibration and infrared and Raman band intensities are discussed, with reference to a number of recent papers. The application of these methods is illustrated through the analysis of a number of selected examples which exemplify the strategies used to extract data from probing the Franck-Condon region. These data include the displacements of the resonant excited state with respect to the electronic ground state, the reorganisation energies associated with photoexcitation, bond length changes with excitation and other electronic parameters. The use, and limitations, of these methods are discussed. The direct calculation of resonance Raman band intensities is introduced. The direct measurement of excited-state vibrational spectra through time-resolved methods is discussed in the latter section of the article; with particular regard to the use of transient resonance Raman and time-resolved resonance Raman techniques to probe structural changes in metal polypyridyl complexes.  相似文献   

15.
Fenofibric acid (FA) is a photosensitizing drug used in the treatment of hyperlipidemia. This compound follows two different photodegradation pathways: the free acid exhibits the typical benzophenone photoreactivity, while its sodium salt undergoes photodecarboxylation via a triplet biradical, that undergoes intramolecular electron transfer to form a carbanion, or cyclization to give an intramolecular light-absorbing transient (LAT). The obtained photoproducts are explained as the result of pro-tonation of the carbanion, ring opening of the LAT with rearrangement or oxygen trapping of any of the triplet intermediates. The above mechanism is supported by direct detection of the triplet state of FA and two long-lived intermediates in laser flash photolysis experiments. The triplet lifetime of the carboxylate form in methanol is 0.06 μ.s; by contrast, in the case of the free acid, it is 10 times longer. The benzophenone moiety is clearly the key chromophore involved in the photobehavior of FA.  相似文献   

16.
Abstract— Characterization of short-lived intermediates in homogeneous and microheterogeneous systems has been carried out using time-resolved spectroscopic techniques. The data obtained from these techniques have been analyzed in a relatively unconventional manner to elucidate complex transient behavior for two reactive systems. The highly nonexponential fluorescence decay for a series of fraws-stilbene-derivatized amphiphiles that readily form bilayer systems in aqueous media has been analyzed using a distribution of lifetimes analysis (DLA). The utility of DLA for quantitative studies was first determined by simulation of artificial decay data. Despite some limitations in DLA, qualitative conclusions as to the nature of the fluorescing species may be drawn when supplementary information such as steady-state spectroscopic data are also considered. The results indicate that the observed fluorescence originates from different types of excited-state species that consist of two or more trans-stilbene units; one of the emissions is attributed to the excited state of a ground-state aggregate while the other is assigned to an excimer that may arise from a 'defect'in the bilayer. The nonexponential nature of the decays is attributed to distributions of environments experienced by the fluorescing species. Electron transfer (ET) reactions between several excited pinacols and carbon tetrachloride in solution have been found to yield products with quantum yields that are higher than unity in the presence of oxygen, suggesting a chain mechanism for product formation. In these systems both the donor and the acceptor undergo bond fragmentation following the initial ET step. The individual steps involved in the proposed mechanism for these systems have been investigated in part using different steady-state and time-resolved laser spectroscopic techniques. However, it was also necessary to utilize pulse radiolysis in order to confirm the involvement of certain radical intermediates that were not observable by the usual flash photolysis techniques.  相似文献   

17.
本文主要以进行稀土元素分析为目的,在已建立的激光荧光寿命测量装置的基础上,建立了时间分辨激光荧光光谱测量装置。结合在此装置上取得的初步实验结果,对装置的原理、特点、使用范围、工作条件进行了讨论。为进行稀土元素的时间分辩激光荧光光谱分析建立了必要的手段,也为某些发光材料的发光动力学研究提供了一定的方法。  相似文献   

18.
There is increasing interest in the use of natural compounds with beneficial pharmacological effects for managing diseases. Curcumin (CUR) is a phytochemical that is reportedly effective against some cancers through its ability to regulate signaling pathways and protein expression in cancer development and progression. Unfortunately, its use is limited due to its hydrophobicity, low bioavailability, chemical instability, photodegradation, and fast metabolism. Nanoparticles (NPs) are drug delivery systems that can increase the bioavailability of hydrophobic drugs and improve drug targeting to cancer cells via different mechanisms and formulation techniques. In this review, we have discussed various CUR-NPs that have been evaluated for their potential use in treating cancers. Formulations reviewed include lipid, gold, zinc oxide, magnetic, polymeric, and silica NPs, as well as micelles, dendrimers, nanogels, cyclodextrin complexes, and liposomes, with an emphasis on their formulation and characteristics. CUR incorporation into the NPs enhanced its pharmaceutical and therapeutic significance with respect to solubility, absorption, bioavailability, stability, plasma half-life, targeted delivery, and anticancer effect. Our review shows that several CUR-NPs have promising anticancer activity; however, clinical reports on them are limited. We believe that clinical trials must be conducted on CUR-NPs to ensure their effective translation into clinical applications.  相似文献   

19.
A new, simple, clean and selective flow injection strategy based on the tandem photochemical reaction-chemiluminescence detection was applied to the determination of chloramphenicol. The determination is based on the on-line photodegradation of the drug in a glycine buffer at pH 8.8 by using a photoreactor consisting of 697 cmx0.5 mm PTFE tubing helically coiled around an 8 W low-pressure mercury lamp. Photodegradated chloramphenicol is detected by direct chemiluminescence of resulting photo-fragments and their subsequent reaction with potassium permanganate in sulfuric acid medium as oxidant. The method allows the chemiluminescence determination of compounds which do not exhibit native chemiluminescence. The calibration graph was linear up to 14 mug ml(-1) chloramphenicol, the limit of detection was 30 ng ml(-1), the relative standard deviation was 2.4% for 7 mug ml(-1) of the drug and the sample throughput was 60 h(-1). Taking into account the importance of the medium of photodegradation on the mechanism of photodegradation a comparative study in terms of selective was performed for different chemical media employed in the procedure of photodegradation. The proposed method was applied to the determination of chloramphenicol in commercially available pharmaceutical formulations.  相似文献   

20.
A time-resolved study of the optogalvanic effect in a pure iodine discharge is reported for pulsed dye laser irradiation at 585 nm. By varying both the spatial location and pulse energy of the laser probe, several contributions to the time evolution of the optogalvanic signal are identified and their origin discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号