首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Encapsulation of nickel oxide (NiO) particles is of great interest to the researchers as such modification produces remarkable improvement in properties and versatility in application potential. In this investigation, nanosized NiO particles were first prepared by calcination of nickel hydroxide precursor obtained using a simple liquid‐phase process. The produced NiO particles were stabilized with oleic acid and then treated with tetraethylorthosilicate to produce NiO/SiO2 composite seed particles. Finally tri‐layered inorganic/organic composite particles were prepared by seeded copolymerization of styrene and 2‐hydroxyethyl methacrylate (HEMA) in the presence of NiO/SiO2 composite seed particles. The produced composite particles named as NiO/SiO2/P(S‐HEMA) were colloidally stable, and the obtained particles were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X‐ray diffraction, X‐ray photoelectron spectroscopy and thermogravimetric analyses. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
邢伟  李丽  阎子峰  LU Gao-Qing 《化学学报》2005,63(19):1775-1781
以十二烷基硫酸钠为模板剂, 采用尿素为沉淀剂, 用均匀沉淀法, 适当控制尿素的水解速度, 制备具有介孔结构的氢氧化镍胶体, 在不同温度下焙烧处理得到孔分布集中的氧化镍介孔分子筛. 结果表明, 在523 K下焙烧得到的氧化镍BET比表面达到477.7 m2•g-1. 结构表征还显示, 介孔氧化镍的孔壁为多晶结构, 其孔结构形成机理应为准反胶束模板机理. 循环伏安法表明用NiO介孔分子筛制备的电极有很好的电容性能. 与浸渍法和阴极沉淀法制得的NiO相比, 这种介孔结构的NiO能够大量用来制作电化学电容器电极, 并且保持较高的比电容量和良好的电容性能.  相似文献   

3.
The chemical reduction method was used to synthesize nickel oxide particles (NiO) and NiO supported on titanium dioxide (NiO/TiO2 nanocomposite). The composites were characterized through scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The morphological investigation showed that pseudocubic NiO are present in dispersed as well as agglomerated forms. Whereas NiO particles (<200 nm) are evenly deposited over the surface of TiO2 in NiO/TiO2 composite. The formation of NiO and NiO/TiO2 was also verified by XRD analysis. The synthesized NiO and NiO/TiO2 were used as photocatalysts for the degradation of Orange II (OII) dye. According to the degradation investigation, both NiO and NiO/TiO2 composite degraded OII dye more efficiently when exposed to UV light. The results indicated that NiO degraded 93% and NiO/TiO2 composites degraded approximately 96% of OII dye within 30 min. Both photocatalysts are highly sustainable and have significant OII dye degradation recyclability. Moreover, NiO and NiO/TiO2 exhibited promising bioactivities (antioxidant activity of 80%) against the pathogenic bacteria Citrobacter and Providencia, which is comparable with the standard ascorbic acid (88%).  相似文献   

4.
Composite polymer electrolyte films comprising polyethylene oxide (PEO) as the polymer host, LiClO4 as the dopant, and NiO nanoparticle as the inorganic filler was prepared by solution casting technique. NiO inorganic filler was synthesized via sol-gel method. The effect of NiO filler on the ionic conductivity, structure, and morphology of PEO-LiClO4-based composite polymer electrolyte was investigated by AC impedance spectroscopy, X-ray diffraction, and scanning electron microscopy, respectively. It was observed that the conductivity of the electrolyte increases with NiO concentration. The highest room temperature conductivity of the electrolyte was 7.4?×?10?4 S cm?1 at 10 wt.% NiO. The observation on structure shows the highest conductivity appears in amorphous phase. This result has been supported by surface morphology analysis showing that the NiO filler are well distributed in the samples. As a conclusion, the addition of NiO nanofiller improves the conductivity of PEO-LiClO4 composite polymer electrolyte.  相似文献   

5.
Hierarchical flowerlike β‐Ni(OH)2 superstructures composed of intermeshed nanoflakes are synthesized by hydrothermal treatment with a mixed solution of C2H4(NH2)2, NaOH, and Ni(NO3)2. The as‐prepared β‐Ni(OH)2 superstructures could be easily changed into NiO superstructures without great morphology change by calcination at 400 °C for 5 h. Furthermore, the TiO2 nanoparticles can be homogeneously deposited on the surface of NiO superstructures by dispersing β‐Ni(OH)2 powders in Ti(OC4H9)4–C2H5OH mixed solution and then vaporizing to remove the ethanol at 100 °C, and finally calcination at 400 °C for 5 h. The prepared NiO/TiO2 p–n junction superstructures show much higher photocatalytic activity for photocatalytic degradation of p‐chlorophenol aqueous solution than conventional TiO2 powders and NiO superstructures prepared under the same experimental conditions. An obvious enhancement in the photocatalytic activity can be related to several factors, including formation of hierarchical porous structures, dispersion of TiO2 particles on the surface of NiO superstructures, and production of a pn junction. Further results show that NiO/TiO2 composite superstructures can be more readily separated from the slurry system by filtration or sedimentation after photocatalytic reaction and re‐used, compared with conventional powder photocatalysts. After many recycling experiments for the photodegradation of p‐chlorophenol, the NiO/TiO2 composite sample does not exhibit any great activity loss, confirming that NiO/TiO2 sample is stable and not photocorroded.  相似文献   

6.
In this work, porous NiO microspheres interconnected by carbon nanotubes (NiO/CNTs) were successfully fabricated by the pyrolysis of nickel metal-organic framework precursors with CNTs and evaluated as anode materials for lithium-ion batteries (LIBs). The structures, morphologies, and electrochemical performances of the samples were characterized by X-ray diffraction, N2 adsorption-desorption, field emission scanning electron microscopy, cyclic voltammetry, galvanostatic charge/discharge tests, and electrochemical impedance spectroscopy, respectively. The results show that the introduction of CNTs can improve the lithium-ion storage performance of NiO/CNT composites. Especially, NiO/CNTs-10 exhibits the highest reversible capacity of 812 mAh g?1 at 100 mA g?1 after 100 cycles. Even cycled at 2 A g?1, it still maintains a stable capacity of 502 mAh g?1 after 300 cycles. The excellent electrochemical performance of NiO/CNT composites should be attributed to the formation of 3D conductive network structure with porous NiO microspheres linked by CNTs, which benefits the electron transfer ability and the buffering of the volume expansion during the cycling process.  相似文献   

7.
Mesoporous NiO particles with crystalline walls were prepared by a simple sol-gel technique. X-ray diffraction (XRD), N2 adsorption–desorption, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) have been used to investigate the mesoporous NiO particles. The as-prepared mesoporous NiO possessed narrow pore in the range of mesopores and was stable up to 700 oC. Various characterization results showed that the mesostructure was formed through the aggregation of nanocrystals and stearic acid in the precursor played an important role in formation of the final mesoporous structures. Mesoporous Ni particles have also been successfully synthesized by reduction of the obtained mesoporous NiO at 700 oC for 30 min.  相似文献   

8.
以乌洛托品为孔形成剂,制备出孔结构可调控的粉煤灰基地质聚合物;通过半导体耦合设计,合成出In_2O_3和NiO双负载粉煤灰基地质聚合物催化剂;采用XRF、TGA/DSC、FESEM、XRD、FT-IR、UV-Vis等对催化剂的组成、结构及性能进行表征,考查了该催化剂体系对模拟印染废水的光催化降解活性、降解机理及反应动力学。结果表明:孔形成剂的掺入能够显著地改善地质聚合物的孔结构,调变BET比表面积及介孔体积;双负载5%In_2O_3及1%NiO的粉煤灰基地质聚合物催化剂对碱性品绿染料的最高降解率(95.65%),归因于In_2O_3与NiO形成的p-n结半导体耦合体系以及In_2O_3与PAFAG载体之间产生强相互作用,改善了光生电子-空穴对的分离效率,从而提高了光催化染料降解活性。  相似文献   

9.
以乌洛托品为孔形成剂,制备出孔结构可调控的粉煤灰基地质聚合物;通过半导体耦合设计,合成出In2O3和NiO双负载粉煤灰基地质聚合物催化剂;采用XRF、TGA/DSC、FESEM、XRD、FT-IR、UV-Vis等对催化剂的组成、结构及性能进行表征,考查了该催化剂体系对模拟印染废水的光催化降解活性、降解机理及反应动力学。结果表明:孔形成剂的掺入能够显著地改善地质聚合物的孔结构,调变BET比表面积及介孔体积;双负载5% In2O3及1% NiO的粉煤灰基地质聚合物催化剂对碱性品绿染料的最高降解率(95.65%),归因于In2O3与NiO形成的p-n结半导体耦合体系以及In2O3与PAFAG载体之间产生强相互作用,改善了光生电子-空穴对的分离效率,从而提高了光催化染料降解活性。  相似文献   

10.
Highly ordered mesoporous molecular sieves AlMCM‐41 and a new NiO/AlMCM‐41 nanocomposite were synthesized using a sol–gel method. Fourier transform infrared (FT‐IR) spectroscopy, X‐ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X‐ray spectroscopy (EDX), and N2 adsorption desorption analyses were used to examine the structure, morphology, size and phase composition of the synthesized NiO/AlMCM‐41 nanocomposites. AlMCM‐41 embedded with NiO nanoparticles was subsequently prepared using different nickel loadings in a direct synthetic route. The results show the successful deposition of NiO nanoparticles onto the framework of AlMCM‐41. AlMCM‐41 provides enormous benefits such as environmentally safe, economic viability and porosity when used as support for NiO nanoparticles. The excellent catalytic activities of AlMCM‐41 and NiO/AlMCM‐41 were investigated for the reduction of nitrophenols (4‐NP, 2‐NP) to aminophenols (4‐AP, 2‐AP) in water at ambient temperature. The best observed performance of reduction of NP with 100% conversion into analogous amino derivatives occurred within 6 min with an estimated rate constant of 0.46 min?1. The efficiency of reduction was observed to increase as a function of NiO enrichment. The NiO/AlMCM‐41 nanocomposite could be recycled and reused up to five times without noticeable change in its structure and activity. These properties make NiO/AlMCM‐41 nanocomposite an ideal platform to study various heterogeneous catalytic processes which can have application in purification, catalysis, sensing devices, and green chemistry.  相似文献   

11.
通过化学浴沉积和水热法在泡沫镍上制备了NiO/MnO_2分级纳米片阵列复合材料,XRD和SEM测试表明NiO纳米片垂直生长在泡沫镍上,交叉形成网状阵列结构;MnO_2纳米介孔泡沫进一步生长在NiO纳米片两侧,与NiO形成了壳核式的复合结构。循环伏安和恒流充放电测试发现,NiO/MnO_2分级纳米片阵列复合材料的电化学性能相比复合前得到明显改善,在1 A·g~(-1)的电流密度下,比电容提高至1 297 F·g~(-1);2 A·g~(-1)下循环1 000次,比电容保持率高达97%,比电容和循环性能的改善是由于分级纳米片阵列复合结构方便了电解液传质,扩大了活性材料与电解液的接触,促进了赝电容反应,提高了NiO和MnO_2的结构稳定性。  相似文献   

12.
通过化学浴沉积和水热法在泡沫镍上制备了NiO/MnO2分级纳米片阵列复合材料,XRD和SEM测试表明NiO纳米片垂直生长在泡沫镍上,交叉形成网状阵列结构;MnO2纳米介孔泡沫进一步生长在NiO纳米片两侧,与NiO形成了壳核式的复合结构。循环伏安和恒流充放电测试发现,NiO/MnO2分级纳米片阵列复合材料的电化学性能相比复合前得到明显改善,在1 A·g-1的电流密度下,比电容提高至1 297 F·g-1;2 A·g-1下循环1 000次,比电容保持率高达97%,比电容和循环性能的改善是由于分级纳米片阵列复合结构方便了电解液传质,扩大了活性材料与电解液的接触,促进了赝电容反应,提高了NiO和MnO2的结构稳定性。  相似文献   

13.
Nanographene- and graphene-based nanohybrids have garnered attention in the biomedical community owing to their biocompatibility, excellent aqueous processability, ease of cellular uptake, facile surface functionalization, and thermal and electrical conductivities. NiO nanoparticle-graphene nanohybrid (G-NiO) was synthesized by first depositing Ni(OH)2 onto the surface of graphene oxide (GO) sheets. The Ni(OH)2-GO hybrids were then reduced to G-NiO using date palm syrup at 85 °C. The prepared G-NiO nanohybrids were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy, and energy-dispersive X-ray spectroscopy (EDX). The NiO nanoparticles, with a diameter of approximately 20–30 nm, were uniformly dispersed over the surface of the graphene sheets. The G-NiO hybrids exhibit biocompatibility in human mesenchymal stem cells (hMSCs) up to 100 μg/mL. The nanohybrids do not cause any significant changes in cellular and nuclear morphologies in hMSCs. The as-synthesized nanohybrids show excellent biocompatibility and could be a promising material for biomedical applications.  相似文献   

14.
Silica supported Nickel Oxide fine particles have been synthesized through sol–gel derived Ni–Al Layered Double Hydroxide (LDH) and coated over honeycomb ceramic pre-forms through dip-coating technique. The powder products of supported materials have low crystallinity, negative zeta potential, exhibit high dispersibility and suitable for further processing by coating techniques. The powder X-ray diffraction (XRD) patterns have shown that there is an increase of basal spacing by 3.02 Å in acetylacetonate intercalated LDH. The particles of <2 μm size increase with the rise of LDH component in the composite. The particles of NiO structure formed on decomposition of composites have crystallite size <20 nm. Due to the interlayer reduction of NiO crystallites, the unsupported LDH on calcination gives Ni0 particles of size around 4.18 nm. The Scanning Electron Microscopy (SEM) patterns of coated supported suspensions over ceramic substrates show formation of thin, crack free coats with uniform distribution of particles.  相似文献   

15.
纳米科技的基础是纳米结构材料的合成.它是纳米科技在分散与包覆、高比表面材料、功能纳米器件、强化材料等方面实现突破的起点。纳米颗粒(1-100nm)本身具有宏观量子隧道效应、量子尺寸效应、表面效应许多独特的性能.其制备研究日益得到广泛关注和重视.  相似文献   

16.
The exploration of substrate materials to construct electrochemical biosensors for glucose monitoring in the field of clinical diagnosis, especially for diabetes is still being investigated extensively. In this paper, NiO/Fe2O3 nanocomposites are designed and synthesized by two-step hydrothermal approach in combination with calcinations. The morphology and microstructure are studied by SEM, XRD, XPS, and TEM systematically. Optimized NiO/Fe2O3 nanocomposites are employed as substrate to construct glucose biosensors, and the electrochemical properties are carried out by cyclic voltammetric and chronoamperometric techniques. The results indicate as-prepared biosensors achieve a high sensitivity of 230.5 μA cm?2 mM?1, wide linear range between 50 and 2867 μM, and low detection limit of 3.9 μM towards glucose detection. The synergistic effect between NiO and Fe2O3 as substrate to construct glucose biosensors is elucidated. The selectivity is acceptable based on the detection of glucose concentration for diabetics.  相似文献   

17.
A series of composites containing 2.5–21.0% NiO on a surface of macroporous silica is synthesized. The specific surface area of the composites measured by the thermal desorption of nitrogen decreases with an increase in the NiO content from 24 for the original silica carrier to 16 m2/g the for composite containing 21.0% NiO. The basic dye, methylene blue (MB), is only adsorbed on SiO2 in water solutions, while acid blue anthraquinone (ABA) is only adsorbed on the NiO. The effective specific surface area Seff and effective diameters D eff of NiO nanoparticles are calculated from the adsorption isotherms of ABA on NiO composites and on NiO synthesized without a carrier. S eff of NiO nanoparticles decreases from 76 to 42 m2/g and D eff increases from 8 to 14 nm with rising NiO content in the composites. The NiO nanoparticles synthesized without a carrier are characterized by the lowest S eff (30 m2/g) and the largest D eff (20 nm).  相似文献   

18.
Porous NiO nanowall arrays (NWAs) grown on flexible Fe-Co-Ni alloy have been successfully synthesized by using nullaginite (Ni2(OH)2CO3) as precursor and investigated as supercapacitor electrodes. In details, we adopted a simple hydrothermal method to realize Ni2(OH)2CO3 NWAs and examined their robust mechanical adhesion to substrate via a long-time ultrasonication test. Porous NiO NWAs were then obtained by a post-calcination towards precursors at 500 °C in nitrogen atmosphere. Electrochemical properties of as-synthesized NiO NWAs were evaluated by cyclic voltammetry and galvanostatic charge/discharge; porous NiO NWAs electrode delivered a specific capacitance of 270 F/g (0.67 A/g); even at high current densities, the electrode could still deliver a high capacitance up to 236 F/g (13.35 A/g). Meanwhile, it exhibited excellent cycle lifetime with ∼93% specific capacitance kept after 4000 cycles. These results suggest that as-made porous NiO NWAs electrode is a promising candidate for future thin-film supercapacitors and other microelectronic systems.  相似文献   

19.
Net-structured NiO was prepared by urea-mediated homogeneous hydrolysis of Ni(CH3COO)2 under microwave radiation followed by a calcination at 500 °C. NiO–C nanocomposite was prepared by dispersing the as-prepared net-structured NiO in glucose solution and subsequent carbonization under hydrothermal conditions at 180 °C. The carbon in the composite was amorphous by the X-ray diffraction (XRD) analysis, and its content was 15.05 wt% calculated according to the energy dispersive X-ray spectroscopy (EDX) result. Transmission electron microscopy (TEM) image of the NiO–C nanocomposite showed that the NiO network was homogeneously filled by amorphous carbon. The reversible capacity of NiO–C nanocomposite after 40 cycles is 429 mAh g−1, much higher than that of NiO (178 mAh g−1). These improvements are attributed to the carbon, which can enhance the conductivity of NiO, suppress the aggregation of active particles, and increase their structure stability during cycling.  相似文献   

20.
A new sensor was fabricated by MIP synthesized on the surface of magnetic nickel(II) oxide (NiO) nanoparticles which based on the oxidation current change of H2O2. Chlortoluron was selected as template which can be detected indirectly by the decrease of the H2O2 oxidation current on the NiO nanoparticle‐modified GCE caused by the blocking access after rebinding. A high sensitivity was obtained because of the high catalytic effect of NiO nanoparticles on H2O2 oxidation. Chlortoluron was determined from 1.0×10?8/L to 1.0×10?4 mol/L, with a detection limit of 2.4×10?9 mol/L. The proposed method combines the high sensitivity of the catalytic effect and the high selectivity of the MIP technique. Water samples were assayed using the MIP sensor, and recoveries of 96.9 % to 104.7 % were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号