共查询到20条相似文献,搜索用时 15 毫秒
1.
Songli Li Shaorong Wang Huaiwen Nie Ting-lian Wen 《Journal of Solid State Electrochemistry》2007,11(1):59-64
A tubular anode-supported solid oxide fuel cell with a double-layer anode for the direct conversion of CH4 has been prepared and operated at 800 °C successfully. The double-layer anode was composed of NiO–YSZ and CoO–NiO–SDC acting
as supporting layer and active reforming layer, respectively. At 800 °C, a maximum power density of 350 mW cm−2 was obtained with CH4 as fuel and air as oxidant. The time-dependent impedance spectra of the tubular cell were examined and discussed. No carbon
deposition was observed on the surface of the anode when the cell was operated at a constant current density of 250 mA cm−2. 相似文献
2.
Kjeang E Michel R Harrington DA Djilali N Sinton D 《Journal of the American Chemical Society》2008,130(12):4000-4006
A microfluidic fuel cell architecture incorporating flow-through porous electrodes is demonstrated. The design is based on cross-flow of aqueous vanadium redox species through the electrodes into an orthogonally arranged co-laminar exit channel, where the waste solutions provide ionic charge transfer in a membraneless configuration. This flow-through architecture enables improved utilization of the three-dimensional active area inside the porous electrodes and provides enhanced rates of convective/diffusive transport without increasing the parasitic loss required to drive the flow. Prototype fuel cells are fabricated by rapid prototyping with total material cost estimated at 2 USD/unit. Improved performance as compared to previous microfluidic fuel cells is demonstrated, including power densities at room temperature up to 131 mW cm-2. In addition, high overall energy conversion efficiency is obtained through a combination of relatively high levels of fuel utilization and cell voltage. When operated at 1 microL min-1 flow rate, the fuel cell produced 20 mW cm-2 at 0.8 V combined with an active fuel utilization of 94%. Finally, we demonstrate in situ fuel and oxidant regeneration by running the flow-through architecture fuel cell in reverse. 相似文献
3.
Jayashree RS Gancs L Choban ER Primak A Natarajan D Markoski LJ Kenis PJ 《Journal of the American Chemical Society》2005,127(48):16758-16759
This communication reports the design and characterization of an air-breathing laminar flow-based microfluidic fuel cell (LFFC). The performance of previous LFFC designs was cathode-limited due to the poor solubility and slow transport of oxygen in aqueous media. Introduction of an air-breathing gas diffusion electrode as the cathode addresses these mass transfer issues. With this design change, the cathode is exposed to a higher oxygen concentration, and more importantly, the rate of oxygen replenishment in the depletion boundary layer on the cathode is greatly enhanced as a result of the 4 orders of magnitude higher diffusion coefficient of oxygen in air as opposed to that in aqueous media. The power densities of the present air-breathing LFFCs are 5 times higher (26 mW/cm2) than those for LFFCs operated using formic acid solutions as the fuel stream and an oxygen-saturated aqueous stream at the cathode ( approximately 5 mW/cm2). With the performance-limiting issues at the cathode mitigated, these air-breathing LFFCs can now be further developed to fully exploit their advantages of direct control over fuel crossover and the ability to individually tailor the chemical composition of the cathode and anode media to enhance electrode performance and fuel utilization, thus increasing the potential of laminar flow-based fuel cells. 相似文献
4.
5.
M. Guerra-Balcázar D. Morales-Acosta F. Castaneda J. Ledesma-García L.G. Arriaga 《Electrochemistry communications》2010,12(6):864-867
Gold nanoparticles have been prepared by two methods: chemical (ex-situ, Au/C) by two phase protocol, and electrochemical (in-situ, Au/Pani) by electroreduction of gold ions on a polyaniline film and compared as anode catalysts in a glucose microfluidic fuel cell. In this paper the structural characteristics and electrocatalytic properties were investigated by X-ray diffraction and electrochemical measurements. The catalytic behavior of both anodes was tested in a microfluidic fuel cell with a reference electrode incorporated, by means of linear sweep voltammetry (LSV), showing a cathodic shift in the glucose oxidation peak for Au/Pani. Results show a higher power density (0.5 mW cm? 2) for Au/C anode compared with an already reported value, where a glucose microfluidic fuel cell was used in similar conditions. 相似文献
6.
On-chip fuel cell: micro direct methanol fuel cell of an air-breathing, membraneless, and monolithic design 总被引:1,自引:0,他引:1
Tominaka S Ohta S Obata H Momma T Osaka T 《Journal of the American Chemical Society》2008,130(32):10456-10457
This paper proposes a novel design for a microfuel cell as an on-chip power source and demonstrates its fabrication and operation to prove the concept. Its simple design is important from the viewpoints of fabrication (e.g., replication), integration, and compatibility with other microdevices. In testing, the prototype cell was able to generate electric power (maximum: ca. 1.4 microW) on methanol without pumps under both neutral and acidic conditions. As for the size, the electrode part of the cell (two cathodes and one anode) is 400 microns in width and 6 mm in length. The evaluation demonstrated that the proposed design is a promising on-chip power source for miniature devices. 相似文献
7.
《中国化学快报》2023,34(4):107441
Air-breathing proton exchange membrane fuel cells (PEMFCs) are very promising portable energy with many advantages. However, its power density is low and many additional supporting parts affect its specific power. In this paper, we aim to improve the air diffusion and fuel cell performance by employing a novel condensing-tower-like curved flow field rather than an additional fan, making the fuel cell more compact and has less internal power consumption. Polarization curve test and galvanostatic discharge test are carried out and proved that curved flow field can strengthen the air diffusion into the PEMFC and improve its performance. With appropriate curved flow field, the fuel cell peak power can be 55.2% higher than that of planar flow field in our study. A four-layer stack with curved cathode flow field is fabricated and has a peak power of 2.35 W (120 W/kg). 相似文献
8.
We describe an advanced microfluidic hydrogen-air fuel cell (FC) that exhibits exceptional durability and high performance, most notably yielding stable output power (>100 days) without the use of an anode-cathode separator membrane. This FC embraces an entirely passive device architecture and, unlike conventional microfluidic designs that exploit laminar hydrodynamics, no external pumps are used to sustain or localize the reagent flow fields. The devices incorporate high surface area/porous metal and metal alloy electrodes that are embedded and fully immersed in liquid electrolyte confined in the channels of a poly(dimethylsiloxane) (PDMS)-based microfluidic network. The polymeric network also serves as a self-supporting membrane through which oxygen and hydrogen are supplied to the cathode and alloy anode, respectively, by permeation. The operational stability of the device and its performance is strongly dependent on the nature of the electrolyte used (5 M H2SO4 or 2.5 M NaOH) and composition of the anode material. The latter choice is optimized to decrease the sensitivity of the system to oxygen cross-over while still maintaining high activity towards the hydrogen oxidation reaction (HOR). Three types of high surface area anodes were tested in this work. These include: high-surface area electrodeposited Pt (Pt); high-surface area electrodeposited Pd (Pd); and thin palladium adlayers supported on a "porous" Pt electrode (Pd/Pt). The FCs display their best performance in 5 M H2SO4 using the Pd/Pt anode. This exceptional stability and performance was ascribed to several factors, namely: the high permeabilities of O2, H2, and CO2 in PDMS; the inhibition of the formation of insoluble carbonate species due to the presence of a highly acidic electrolyte; and the selectivity of the Pd/Pt anode toward the HOR. The stability of the device for long-term operation was modeled using a stack of three FCs as a power supply for a portable display that otherwise uses a 3 V battery. 相似文献
9.
R. Mohammadi M. Ghassemi Y. Mollayi Barzi M. H. Hamedi 《Journal of Solid State Electrochemistry》2012,16(10):3275-3288
The purpose of the current study is to simulate the behavior of a solid oxide fuel cell (SOFC) anode under sinusoidal excitation. The obtained harmonic response is used as a base for electrochemical impedance spectra simulation. The electrochemical impedance spectroscopy (EIS) is a powerful non-destructive tool for SOFC researches. In order to evaluate the EIS experimental results, efforts are devoted to develop EIS numerical simulation tools. In this study, a planar SOFC is modeled, and the steady state behavior and frequency response, as well as the electrochemical spectra of the anode, are obtained. The developed model couples the electrochemical kinetics with mass transport. The Butler–Volmer equation is used for the anode electrochemistry, and the species equations are used for gas transport in the anode channel. In order to solve the system of the nonlinear equations, an in-house code based on finite difference method is developed and utilized. A parametric study is also carried out, and the results are discussed. The simulation results are in good agreement with published data. Results show a capacitive semicircle in the Nyquist plot, which is identical to the gas diffusion impedance as reported in literatures. 相似文献
10.
《Electrochemistry communications》2008,10(10):1471-1473
A novel composite anode catalyst layer for direct methanol fuel cell is reported in this paper. The dual-layer anode, which is based on the catalyst coated membrane technique, characterizes a morphological variety of the catalyst layer. The inner sub-layer with a dense morphology can effectively suppress methanol crossover. On the other hand, the outer sub-layer modified by the pore-forming agent, NH4HCO3 and the carbon nanotubes can enhance the electrochemical surface area and increase the catalyst utilization. The structural improvement of anode catalyst layer results in a 40% increment in maximum power density during the single cell test at 30 °C. 相似文献
11.
12.
A design for a passive, air-breathing microfluidic fuel cell utilizing formic acid (FA) as a fuel is described and its performance characterized. The fuel cell integrates high surface area platinum (cathode) and palladium-platinum (anode) alloy electrodes within a PDMS microfluidic network that keeps them fully immersed in a liquid electrolyte. The polymer network that comprises the device also serves as a self-supporting membrane through which FA and oxygen are supplied to the alloy anode and cathode, respectively, by passive permeation from external sources. The cell is based on a planar form-factor and in its operation exploits FA concentration gradients that form across the PDMS membrane. These latter gradients allow the device to operate stably, producing a nearly constant limiting power density of ~0.2 mW/cm2, without driven laminar flow of fluids or the incorporation of an in-channel separator between the anodic and the cathodic compartments. The power output of this elementary device in air is subject to electrolyte mass transport impacts, which can be reduced for a given design rule by decreasing the internal ohmic resistance of the cell. The results suggest that operational stability can be improved by decreasing the kinetic losses imposed on the cathode side of the cell due to FA crossover and modalities for doing so, such as by increasing the efficiency of fuel capture at the anode. 相似文献
13.
The paper reports the operation of a new-design microbial fuel cell using compost leachate as a substrate, oxygen/electrodeposited MnOx cathode and a new-anode concept with graphite modified by an iron/sulfur solid chemical catalyst which almost eliminates the starting delay time and gives very high current and power densities, I ~ 25 A m− 3 at Pmax ~ 12 W m− 3 or I ~ 3.8 A m− 2 at Pmax ~ 1.8 W m− 2. 相似文献
14.
15.
Qing Mao Ulrike Krewer Richard Hanke-Rauschenbach 《Electrochemistry communications》2010,12(11):1517-1519
In this study, total harmonic distortion (THD) analysis is put forward to illustrate nonlinear behavior of direct methanol fuel cell (DMFC) anode. THD simulations by means of different methanol oxidation kinetics as well as its experimental validation are both carried out. It is shown that the THD model adopting a three-step methanol oxidation mechanism with Kauranen–Frumkin/Temkin kinetics can be used to illustrate the THD variation for DMFC anode qualitatively. The experimental THD response at the frequency range from 0.063 Hz to 0.4 Hz is identified as the reflection of the nonlinearity variation of those kinetic steps involving intermediates in the methanol oxidation. In such a frequency domain, THD value decrease monotonously with decreasing methanol concentration, which notices its accessibility on methanol concentration detection. 相似文献
16.
An approach for improving the power generation of a dual-chamber microbial fuel cell by using a nanostructured polyaniline (PANI)-modified glassy carbon anode was investigated. Modification of the glassy carbon anode was achieved by the electrochemical polymerisation of aniline in 1 M H2SO4 solution. The MFC reactor showed power densities of 0.082 mW cm?2 and 0.031 mW cm?2 for the nano- and microstructured PANI anode, respectively. The results from electron microscopy scanning confirmed formation of the nanostructured PANI film on the anode surface and the results from electrochemical experiments confirmed that the electrochemical activity of the anode was significantly enhanced after modification by nanostructured PANI. Electrochemical impedance spectroscopic results proved that the charge transfer would be facilitated after anode modification with nanostructured PANI. 相似文献
17.
Journal of Solid State Electrochemistry - In this paper, we report on the development and optimization of a copper anode material coated with a thin polyaniline layer for use in a microbial fuel... 相似文献
18.
Sangho Yoon Yongmin Kim Sunyoung Kim Joongmyeon Bae 《Journal of Solid State Electrochemistry》2010,14(10):1793-1800
In this work, the effects of ethylene on the solid oxide fuel cell (SOFC) anode were investigated both for an SOFC single cell and an SOFC stack. Two fuels were used to observe the effects that low hydrocarbons (over C1-hydrocarbons) in the reformate gas stream have on the SOFC anode. Methane or ethylene was supplied to the electrolyte-supported SOFC anode. Using ethylene as a fuel, catastrophic degradation of SOFC performance was observed due to ethylene-induced carbon deposition onto the SOFC anode. Thus, a new methodology, termed “post-reforming,” is introduced for the removal of low hydrocarbons (over C1-hydrocarbons) from the reformate gas stream. The CGO-Ru catalyst was selected as the post-reforming catalyst because of its high selectivity for removing low hydrocarbons (over C1-hydrocarbons) and for its long-term stability. The diesel reformer and post-reformer were continuously operated for ∼250 h in coupled-operation mode. The reforming performance was not degraded, and low hydrocarbons (over C1-hydrocarbons) in the diesel reformate were completely removed. 相似文献
19.
A. A. Kurteeva S. M. Beresnev D. A. Osinkin B. L. Kuzin G. K. Vdovin V. D. Zhuravlev N. M. Bogdanovich D. I. Bronin A. A. Pankratov I. Yu. Yaroslavtsev 《Russian Journal of Electrochemistry》2011,47(12):1381-1388
Single solid-oxide fuel cells (SOFCs) with a porous (36-41%) supporting Ni-cermet anode are manufactured and tested. The effect
of the thickness of the supporting Ni-cermet anode on the electrochemical characteristics of single SOFCs is studied. It is
shown that polarization losses on electrodes at the current density of 1.2 A/cm2 increase by about 2 times from 0.13 to 0.25 V at an increase in the thickness of the supporting Ni-cermet anode from 0.40
to 1.27 mm. The impedance spectroscopy method is used to identify relaxation processes responsible for the behavior of the
fuel cell anode and cathode. It is found that a significant percentage of polarization losses on the anode is due to transport
limitations in fuel supply to the three-phase nickel/electrolyte/gas phase interface and removal of the reaction products
away from it. 相似文献
20.
We report the fabrication of a microfluidic chip or lab-on-a-chip integrated with a thickness-shear mode (TSM) acoustic wave sensor for muscle cell analysis. The sensor, essentially an AT-cut quartz crystal, serves as a detector for recording changes in acoustic wave properties occurring in an attached cardiomyocyte (single heart muscle cell) during its contraction and relaxation. Presumably, the changes resulted from alterations in viscoelastic properties (e.g. stiffness) of the cells. The effects of excitation electrode size, the presence of a microfluidic channel plate, and liquid loading on the sensor were first examined. Thereafter, muscle cell contraction analysis upon chemical stimuli were described. The potential of the chip for screening of cardiovascular drugs is discussed. 相似文献