首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple approach to the coherence effects in the Kondo lattice is presented, using the functional integral method. We show the existence of a coherence temperature Tc smaller than TK, below which coherence between impurities appears. The density of states is calculated in an approximation which takes into account coherent and incoherent scattering. We also show how the thermodynamic properties reflect the coherence effects.  相似文献   

2.
The magnetic impurity scattering plays an important role in the phase coherence behavior of thin films.By using the thickness and disorder dependences of the low temperature logarithmic anomaly in resistivity we are able to determine the concentration of magnetic impurities in Au films and demonstrate that the low temperature saturation or plateau in phase decoherence time is closely related with the Kondo effect.  相似文献   

3.
Measurements of the magnetic susceptibility, magnetization, specific heat and electrical resistivity on a new Kondo lattice compound CeCu1.54Si1.46 have revealed an antiferromagnetic phase transition at 6.9 K. The analysis of the specific heat demonstrates that this compound is a moderately heavy electron system with strong spin fluctuations. Based on the resistivity result, we maintain that the coherence between Kondo states at Ce sites is hindered by the disorder in the Cu and Si sublattice in this non-stoichiometric compound.  相似文献   

4.
We present phase coherence time measurements in quasi-one-dimensional Ag wires doped with Fe Kondo impurities of different concentrations n_{s}. Because of the relatively high Kondo temperature T_{K} approximately 4.3 K of this system, we are able to explore a temperature range from above T_{K} down to below 0.01T_{K}. We show that the magnetic contribution to the dephasing rate gamma_{m} per impurity is described by a single, universal curve when plotted as a function of T/T_{K}. For T>0.1T_{K}, the dephasing rate is remarkably well described by recent numerical results for spin S=1/2 impurities. At lower temperature, we observe deviations from this theory. Based on a comparison with theoretical calculations for S>1/2, we discuss possible explanations for the observed deviations.  相似文献   

5.
In order to probe quantitatively the effect of Kondo impurities on energy exchange between electrons in metals, we have compared measurements on two silver wires with dilute magnetic impurities (manganese) introduced in one of them. The measurement of the temperature dependence of the electron phase coherence time on the wires provides an independent determination of the impurity concentration. Quantitative agreement on the energy exchange rate is found with a theory by G?ppert et al. that accounts for Kondo scattering of electrons on spin-1/2 impurities.  相似文献   

6.
We present measurements of the phase coherence time taupsi in quasi-one-dimensional Au/Fe Kondo wires and compare the temperature dependence taupsi of with a recent theory of inelastic scattering from magnetic impurities [Phys. Rev. Lett. 93, 107204 (2004)10.1103/PhysRevLett.93.107204]. A very good agreement is obtained for temperatures down to 0.2T(K). Below the Kondo temperature T(K), the inverse of the phase coherence time varies linearly with temperature over almost one decade in temperature.  相似文献   

7.
We present a mechanism of resistivity minimum in conduction electron systems coupled with localized moments, which is distinguished from the Kondo effect. Instead of the spin-flip process in the Kondo effect, electrons are elastically scattered by local spin correlations which evolve in a particular way under geometrical frustration as decreasing temperature. This is demonstrated by the cellular dynamical mean-field theory for a spin-ice-type Kondo lattice model on a pyrochlore lattice. Peculiar temperature dependences of the resistivity, specific heat, and magnetic susceptibility in the non-Kondo mechanism are compared with the experimental data in metallic Ir pyrochlore oxides.  相似文献   

8.
The heavy fermion compound CeCu2Si2 is commonly regarded as a Kondo lattice system. Though it has been shown that the heavy mass quasiparticles participate in its superconductivity below ~ 0.7 K, a detailed understanding of the interdependence of the superconducting and the Kondo lattice parameters is still to be developed. The application of pressure is one useful approach to study this problem. In this paper we present results of specific heat measurements between 0.3 K and 2 K under pressures up to 5.9 kbar. While in our sample Tc hardly changes, the normal state specific heat, which is exclusively of electronic origin in the present temperature range, is rapidly decreased in a monotonous way, qualitatively corresponding to the expected rise of the Kondo temperature with pressure. In contrast to this behaviour, a strong nonlinear change of the jump Δc(Tc) passing through a maximum near 3 kbar is observed. We suggest that this reflects changes of the Kondo lattice coherence structure in the quasiparticle density of states near EF.  相似文献   

9.
The renormalized time ordered perturbation approach for the (impurity -) Anderson model with respect to hybridization is combined with a random walk treatment of coherent scattering in order to calculate the one particle excitation spectrum of an Anderson lattice in the Kondo regime. It is found that the Kondo resonance at the Fermi-level splits into two narrow peaks. With decreasing temperature a gap develops in between these peaks due to coherence effects. These results furnish a more rigorous basis for phenomenological theories explaining experimental data in Kondo lattice systems like CeCu2Si2.  相似文献   

10.
We study the interplay between magnetic correlations of two Kondo impurities and superconducting singlet pairing. Performing a Schrieffer-Wolff transformation in the zero-bandwidth limit of the two-impurity Anderson model we obtain the Hamiltonian of two magnetic impurities and we add a superconducting term to the conduction electrons. The model allows us to study the effect of the magnetic correlation between the impurities on the superconducting ground state. At zero temperature, different superconducting ground states can be obtained depending on the magnitude of magnetic coupling between S1 and S2. For increasing coupling, the superconducting region is enlarged showing an interesting result: in the strong coupling limit, where the impurities are in a very strong ferromagnetic correlation state, half of the conduction electrons are decoupled from the local moments of the impurities and take advantage of the superconducting pairing lowering the ground state energy. On the contrary, when the coupling between S1and S2 decreases, the scenario of the two independent Kondo impurities in presence of superconductivity emerges and all the conduction electrons are involved in the pair breaking physics. At finite temperature, we obtain the phase diagram and we observe a region of parameters where the re-entrance phenomenon occurs.  相似文献   

11.
Recent advances in scanning tunneling microscopy have allowed the observation of the Kondo effect for individual magnetic atoms. One hallmark of the Kondo effect is a strong temperature-induced broadening of the Kondo resonance. In order to test this prediction for individual impurities, we have investigated the temperature dependent electronic structure of isolated Ti atoms on Ag(100). We find that the Kondo resonance is strongly broadened in the temperature range T = 6.8 K to T = 49.0 K. These results are in good agreement with theoretical predictions for Kondo impurities in the Fermi liquid regime, and confirm the role of electron-electron scattering as the main thermal broadening mechanism.  相似文献   

12.
We propose that competition between Kondo and magnetic correlations results in a novel universality class for heavy fermion quantum criticality in the presence of strong randomness. Starting from an Anderson lattice model with disorder, we derive an effective local field theory in the dynamical mean-field theory approximation, where randomness is introduced into both hybridization and Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions. Performing the saddle-point analysis in the U(1) slave-boson representation, we reveal its phase diagram which shows a quantum phase transition from a spin liquid state to a local Fermi liquid phase. In contrast with the clean limit case of the Anderson lattice model, the effective hybridization given by holon condensation turns out to vanish, resulting from the zero mean value of the hybridization coupling constant. However, we show that the holon density becomes finite when the variance of the hybridization is sufficiently larger than that of the RKKY coupling, giving rise to the Kondo effect. On the other hand, when the variance of the hybridization becomes smaller than that of the RKKY coupling, the Kondo effect disappears, resulting in a fully symmetric paramagnetic state, adiabatically connected to the spin liquid state of the disordered Heisenberg model. We investigate the quantum critical point beyond the mean-field approximation. Introducing quantum corrections fully self-consistently in the non-crossing approximation, we prove that the local charge susceptibility has exactly the same critical exponent as the local spin susceptibility, suggesting an enhanced symmetry at the local quantum critical point. This leads us to propose novel duality between the Kondo singlet phase and the critical local moment state beyond the Landau-Ginzburg-Wilson paradigm. The Landau-Ginzburg-Wilson forbidden duality serves the mechanism of electron fractionalization in critical impurity dynamics, where such fractionalized excitations are identified with topological excitations.  相似文献   

13.
The crossover between a free magnetic moment phase and a Kondo phase in low-dimensional disordered metals with dilute magnetic impurities is studied. We perform a finite-size scaling analysis of the distribution of the Kondo temperature obtained from a numerical renormalization group calculation of the local magnetic susceptibility for a fixed disorder realization and from the solution of the self-consistent Nagaoka-Suhl equation. We find a sizable fraction of free (unscreened) magnetic moments when the exchange coupling falls below a critical value Jc. Between the free moment phase due to Anderson localization and the Kondo-screened phase we find a phase where free moments occur due to the appearance of random local pseudogaps at the Fermi energy whose width and power scale with the elastic scattering rate 1/tau.  相似文献   

14.
The splitting of the Kondo resonance in the density of states of an Anderson impurity in a finite magnetic field is calculated from the exact Bethe-ansatz solution. The result gives an estimate of the electron spectral function for a nonzero magnetic field and the Kondo temperature, with consequences for transport experiments on quantum dots in the Kondo regime. The strong correlations of the Kondo ground state cause a significant low-temperature reduction of the peak splitting. Explicit formulas are found for the shift and broadening of the Kondo peaks. A likely cause of the problems of large- N approaches to spin- 1 / 2 impurities at finite magnetic field is suggested.  相似文献   

15.
Yi-Jie Wang 《中国物理 B》2022,31(9):97305-097305
A systematic study is performed on time-dependent dynamic transport characteristics of a side-coupled double-quantum-impurity system based on the hierarchical equations of motion. It is found that the transport current behaves like a single quantum dot when the coupling strength is low during tunneling or Coulomb coupling. For the case of only tunneling transition, the dynamic current oscillates due to the temporal coherence of the electron tunneling device. The oscillation frequency of the transport current is related to the step voltage applied by the lead, while temperature $T$, electron--electron interaction $U$ and the bandwidth $W$ have little influence. The amplitude of the current oscillation exists in positive correlation with $W$ and negative correlation with $U$. With the increase in coupling $t_{12}$ between impurities, the ground state of the system changes from a Kondo singlet of one impurity to a spin singlet of two impurities. Moreover, lowering the temperature could promote the Kondo effect to intensify the oscillation of the dynamic current. When only the Coulomb transition is coupled, it is found that the two split-off Hubbard peaks move upward and have different interference effects on the Kondo peak at the Fermi surface with the increase in $U_{12}$, from the dynamics point of view.  相似文献   

16.
The evolution of the Kondo effect and antiferromagnetic (AF) correlations with size reduction in CePt2 nanoparticles (3.1-26 nm) is studied by analysis of the temperature-dependent specific heat and magnetic susceptibility. The AF correlations diminish with size reduction. The Kondo effect predominates at small particle size with trivalent, small Kondo temperature (TK) magnetic regions coexisting with strongly mixed-valent, large TK nonmagnetic regions. We discuss the role of structural disorder, background density of states and the electronic quantum size effect on the results.  相似文献   

17.
Motivated by the global phase diagram of antiferromagnetic heavy-fermion metals, we study the Kondo effect from the perspective of a nonlinear sigma model in the one-dimensional Kondo-Heisenberg model away from half-filling. We focus on the effects of the instanton configurations of the sigma-model field and the associated Berry phase. Guided by the results derived using bosonization methods, we demonstrate that the Kondo-singlet formation is accompanied by an emergent Berry phase. This Berry phase also captures the competition between the Kondo-singlet formation and spin-Peierls correlations. Related effects are likely to be realized in Kondo lattice systems in higher dimensions.  相似文献   

18.
We theoretically present the results for a scanning tunneling transport between a metallic tip and a Kondo lattice.We calculate the density of states(DOS)and the tunneling current and differential conductance(DC)under different conduction-fermion band hybridization and temperature in the Kondo lattice.It is found that the hybridization strength and temperature give asymmetric coherent peaks in the DOS separated by the Fermi energy.The corresponding current and DC intensity depend on the temperature and quantum interference effect among the c-electron and f-electron states in the Kondo lattice.  相似文献   

19.
为解释重费密子超导现象,本文在Kondo晶格中建立了S波和P波超导理论,并在推广的Nambu空间中对f电子和传导电子的杂化作用进行了自洽处理,计算了有关物理量。理论证明:如果认为f电子参与超导,对S波,所得到的超导转变温度与Tachiki等人的结果一致,但比热跃交与他们的不同,本文的结果更合理些;对P波,由Kondo晶格模型描述的重费密子超导系统等效于修正的局域的费密超流体。此外,本文还研究了杂质散射对超导态的影响,并对各种不同的超导态分别得到了出现无能隙超导的条件。 关键词:  相似文献   

20.
Kondo resonances are a very precise measure of spin-polarized transport through magnetic impurities. However, the Kondo temperature, indicating the thermal range of stability of the magnetic properties, is very low. By contrast, we find for iron phthalocyanine a Kondo temperature in spectroscopic measurements which is well above room temperature. It is also shown that the signal of the resonance depends strongly on the adsorption site of the molecule on a gold surface. Experimental data are verified by extensive numerical simulations, which establish that the coupling between iron states and states of the substrate depends strongly on the adsorption configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号