首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To unravel molecular motion within confined liquids, we have combined a surface forces apparatus (SFA) with a highly sensitive fluorescence microscope. Details of our setup including important modifactions to enable the tracking of single dye molecules within nanometer thin confined liquid films are presented. The mechanical and optical performance of our setup is discussed in detail. For a load of 20 mN we observed a circular-shaped contact region (d approximately 300 microm), which results in a confining pressure of about 280 kPa. First experiments on liquid films of tetrakis(2-ethylhexoxy)silane (TEHOS) doped with rhodamine B demonstrated the ability to track single dye molecules within the confining gap of a SFA. The mean diffusion constant was independent of the liquid film thickness of approximately 3x10(-8) cm2/s and thus 10 times smaller than the diffusion constant of rhodamine B in bulk TEHOS. This points to the existence of a thin interface layer with slower molecular dynamics and an attractive potential parallel to the solid surface trapping molecules in this interface region.  相似文献   

2.
The present review paper focuses on direct measurements of oscillatory forces. Beside the surface forces apparatus (SFA), atomic force microscopy (AFM) has emerged as the most commonly used technique to measure surface forces. Recent instrumental advances of both methods are highlighted in the review. Different systems, showing oscillatory forces are classified. Principle distinction is made between 1-component liquids (water, organic liquids and liquid crystals), pseudo 1-component liquids (ionic liquids and microemulsions) and 2-component liquids (dispersions containing polyelectrolytes, micelles or nanoparticles). In the last few years, the oscillatory force studies address particle characterisation, synergistic effects in multicomponent systems, the introduction of ‘switchable’ forces, and resolving liquid properties under confinement. Last but not least, the ability of AFM and SFA to measure oscillatory forces is discussed.  相似文献   

3.
A new concept of designing and synthesizing highly dispersed ionic-liquid catalysts was developed through physical confinement or encapsulation of ionic liquids (with or without metal complex) in a silica-gel matrix through a sol-gel process. We studied ionic liquids such as EMImBF4, BuMImBF4, DMImBF4, CMImBF4, BuMImPF6, either with or without [Pd(PPh3)2Cl2] and [Rh(PPh3)3Cl], in a silica-gel matrix (E = ethyl, Bu = butyl M = methyl, D = decyl, C = cetyl and Im = imidazolium). The contents of ionic liquids and loadings of Pd or Rh were 8-53 wt % and 0.1 approximately 0.15 wt %, respectively. Analyses of FT-Raman spectra showed that abnormal Raman spectra of the confined ionic liquids were observed in comparison with the bulk and pure ionic liquids. EMImBF4 and BuMImBF4 ionic liquids could be completely washed out from the silica-gel matrix under vigorous reflux conditions, but ionic liquids with larger molecular size, for example, DMImBF4 or CMImBF4, could be confined into the silica-gel nanopores relatively firmly. These results suggested that the ionic liquids were physically confined or encapsulated into the silica gel. The N2 adsorption measurements indicated that the silica-gel skeleton was mesoporous with 50-110 A pore size after the BuMImBF4 ionic liquid was removed completely. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis showed that the silica-gel matrix was amorphous and non-uniformly mesoporous. Carbonylation of aniline and nitrobenzene for synthesis of diphenyl urea, carbonylation of aniline for synthesis of carbamates, and oxime transformation between cyclohexanone oxime and acetone were used as test reactions for these catalysts. Catalytic activities were remarkably enhanced with much lower amounts of ionic liquids needed with respect to bulk ionic-liquid catalysts or silica-supported ionic-liquid catalysts prepared with simple impregnation, in which the ionic liquid may be deposited as a thin layer on the support. Such unusual enhancement in catalytic activities may be attributed to the formation of nanoscale and high-concentration ionic liquids due to the confinement of the ionic liquid in silica gel; this results in unusual changes in the symmetry and coordination geometry of the ionic liquids.  相似文献   

4.
(1)H MAS NMR and temperature-dependent relaxation time measurements were carried out for the first time on ionic liquids confined in monolithic silica matrices and enabled us to show that the ionic liquids' dynamics experienced only a very small slowing-down. The confinement preserved the ionic liquids' properties and, moreover, allowed liquid-like behaviour at temperatures below the crystallisation temperature of genuine ionic liquids. This study highlights the interest of the ionogel approach to all-solid state devices with genuine IL properties.  相似文献   

5.
For nearly the past two decades, significant effort has been devoted to pursuing an understanding of the glass transition temperature and associated dynamics of polymers confined to the nanoscale. Without question, we know more about the glassy properties of confined polymers today than we knew two decades ago or even a decade ago. Much of our understanding has been obtained via studies on thin polymer films, as they are facile to process and are of substantial technological importance. Nevertheless, studies on polymers confined to other geometries are becoming increasingly more important as we pursue questions difficult to address using thin films and as technology demands the use of confined polymers beyond thin films. In this feature article, we highlight the impact of nanoscale confinement on the glassy properties of polymer nanoparticles. Although the emphasis is placed on contributions from our work, a discussion of the related literature is also presented. Our aim is to elucidate commonalities or fundamental differences in the deviations of glassy properties from the bulk for polymers confined to different geometries. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

6.
Recently, there has been significant interest in measuring the glass transition temperature (Tg) of thin polymer films floated atop liquid substrates. However, such films still have intrinsically asymmetric interfaces, that is, a free surface and a liquid–polymer interface. In an effort to analyze the influence of different liquids on the Tg of confined polymers in which there is no interfacial asymmetry, a colloidal suspension of polystyrene (PS) nanoparticles (NPs) was employed. The Tgs of PS NPs suspended in either glycerol or an ionic liquid were characterized using differential scanning calorimetry. Nanoparticles suspended in an ionic liquid showed an invariance of Tg with confinement, that is, decreasing diameter. In contrast, nanoparticles suspended in glycerol showed a slight decrease in Tg with confinement. The dependence of NP Tg on the nature of the surrounding liquid exhibited a positive correlation with the interfacial energy of the liquid–PS interface and no correlation with interfacial softness, as measured by viscosity. A comparison of the results with thin films supported by liquid or solid substrates revealed a nontrivial interplay between interfacial softness and interfacial interactions on the Tg of confined PS. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1776–1783  相似文献   

7.
Confinement of polymers to nanoscale dimensions can dramatically impact their physical properties. Substantial efforts have focused on the glass transition temperature (Tg) of polymers confined to thin films, but their mechanical properties are less studied despite their technological importance. In this review, challenges with mechanical measurements of polymer thin films are discussed along with novel metrologies that provide insight into their mechanical properties. A comparison of experimental measurements, simulations and theory provide several general conclusions about the mechanical properties under confinement. Confinement impacts the elastic modulus, rubbery compliance and viscosity of polystyrene, the archetypal polymer for confinement, but the confinement effect appears to depend on the measurement technique. This effect may be due to the details of averaging of gradients in properties that are dependent on the measurement details. Routes to minimize confinement effects are addressed. Despite progress in the measurements of mechanical properties of polymer thin films, there remain unresolved questions about the impact of confinement, which we highlight at the end of this review. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 9–30  相似文献   

8.
The phase behavior of cylinder-forming ABA block copolymers in thin films is modeled in detail using dynamic density functional theory and compared with recent experiments on polystyrene-block-polybutadiene-block-polystyrene triblock copolymers. Deviations from the bulk structure, such as wetting layer, perforated lamella, and lamella, are identified as surface reconstructions. Their stability regions are determined by an interplay between surface fields and confinement effects. Our results give evidence for a general mechanism governing the phase behavior in thin films of modulated phases.  相似文献   

9.
A surface force balance with extremely high sensitivity and resolution for measuring shear forces across thin films has been used to investigate directly the dynamic properties of salt-free water (so-called conductivity water) in a gap between two atomically smooth solid surfaces. Our results reveal that no shear stress can be sustained by water (within our resolution and shear rates) down to films of thickness D = D0 = 0.0 +/- 0.3 nm. At short range (D < 3.5 +/- 1 nm), an attractive van der Waals (vdW) force between the surfaces causes a jump into a flat adhesive contact at D0, at which the surfaces rigidly couple. Analysis of the jump behavior reveals that the viscosity of water remains within a factor of 3 or so of its bulk value down to D0. This contrasts sharply with the case of confined nonassociating liquids, whose effective viscosity increases by many orders of magnitude at film thicknesses lower than about five to eight monolayers. We attribute this to the fundamentally different mechanisms of solidification of organic liquids and of water. In the former case, the density increase induced in the films by the confinement promotes solidification, while, in the case of water, such densification (due to vdW attraction between the liquid molecules and the confining walls), in agreement with bulk behavior, suppresses the tendency of the water to solidify.  相似文献   

10.
Ionic liquids have attracted a considerable attention as the next generation electrolytes for energy devices. We have developed new free-standing and nanostructured polymer films in which ionic liquids are confined into one-dimensionally ordered nanochannels. These polymer films have been obtained by photopolymerization of hydrogen-bonded supramolecular columnar liquid-crystalline self-assemblies of an imidazolium-based ionic liquid and a wedge-shaped diol compound containing polymerizable groups. The macroscopically parallel alignment of the columnar structures on a glass substrate has been achieved by the application of mechanical shearing, and subsequently fixed into polymer films by UV irradiation. This ionic liquid-containing polymer film exhibits higher ionic conductivity than that of the previously reported one-dimensional polymer film obtained by in situ photopolymerization of a covalent-type columnar liquid-crystalline imidazolium salt. The noncovalent supramolecular approach to one-dimensionally ion-conductive polymer films has led to improvement on conductive properties. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 366–371  相似文献   

11.
Two techniques are described for measuring the shear viscosities of thin liquid films confined between two surfaces. Both techniques employ the surface forces apparatus, which has already been used extensively to measure the static interactions between surfaces in liquids. With either of the new dynamic techniques, shear viscosities of the confined liquids can be measured as a function of film thickness with a precision of about 0.1 nm (1 Å). The techniques complement each other: one is used to best advantage at high shear rates, the other at low shear rates. Results are presented for measurements made on low-molecular-weight polymer melts of polybutadienes. At low shear rates, these results provide detailed information on the relation between polymer molecular weight, the conformation of polymer molecules at the surfaces, the intermolecular forces between the surfaces, and the location of the shear plane (plane of no-slip). At high shear rates, the results suggest the gradual evolution of non-Newtonian behavior in submicron liquid films.  相似文献   

12.
郑燕升  卓志昊  莫倩  李军生 《化学进展》2011,23(9):1862-1870
分子模拟方法是研究离子液体结构与性质关系非常有效的方法,可以从分子间相互作用出发研究离子液体的微观结构、热力学和动力学性质;量子化学计算则在分子、电子水平上对离子液体的结构、性能及催化机理进行理论研究。本文综述了分子模拟方法应用于离子液体体系的研究进展,重点介绍了利用分子动力学模拟和量子化学计算方法对不同离子液体进行研究,获得离子液体的结构性质、光谱性质(红外光谱、拉曼光谱)及离子液体催化反应机理等,为探讨离子液体结构-性质的关系、离子对的作用方式、催化反应活性中心、反应途径、反应活化能、振动模式和频率以及设计功能性离子液体提供理论导向。  相似文献   

13.
A new concept of designing and synthesizing highly dispersed ionic liquids was developed through physical confinement or encapsulation of them into silica gel matrix with sol-gel process. A series of silica gel confined ionic liquids were synthesized through this process and characterized by diffuse-reflectance infrared Fourier transform spectroscopy (DRIFTS) and FTRaman analysis, and abnormal FT-IR and FTRaman spectra were observed. The silica gel matrixes confined ionic liquid BMImBF(4) were further characterized by BET analysis after the ionic liquid was almost completely washed out by acetone under refluxing conditions and meso-porous silica gel matrixes were obtained according to the N(2) adsorption measurements, which suggested that the particle-size of the dispersed ionic liquids was in nano-scale. In consideration of the results obtained together, it could be found that the abnormal FT-IR and FTRaman spectra were changed with the pore-size of the silica gel matrix. For example, obvious abnormal FT-IR and FTRaman spectra appeared when the particle-size of ionic liquid BMImBF(4) is smaller than 11 nm while they disappeared again if the corresponding particle-size >11 nm. These results indicated that nano-effect, or restriction effect, produced from the nano-pores of silica gel was the reason for the abnormal FT-IR and FTRaman spectra.  相似文献   

14.

Silica sol-gel matrices and its organically modified analogues that contain aqueous electrolytes, ionic liquids, or other ionic conductors constitute stand-alone solid-state electrochemical cells when hosting electrodes or serve as modifying films on working electrodes in conventional cells. These materials facilitate a wide variety of analytical applications and are employed in various designs of power sources. In this review, analytical applications are the focus. Solid-state cells that serve as gas sensors, including in chromatographic detectors of gas-phase analytes, are described. Sol-gel films that modify working electrodes to perform functions such as hosting electrochemical catalysts and acting as size-exclusion moieties that protect the electrode from passivation by adsorption of macromolecules are discussed with emphasis on pore size, structure, and orientation. Silica sol-gel chemistry has been studied extensively; thus, factors that control its general properties as frameworks for solid-state cells and for thin films on the working electrode are well characterized. Here, recent advances such as the use of dendrimers and of nanoscale beads in conjunction with electrochemically assisted deposition of silica to template pore size and distribution are emphasized. Related topics include replacing aqueous solutions as the internal electrolyte with room-temperature ionic liquids, using the sol-gel as an anchor for functional groups and modifying electrodes with silica-based composites.

  相似文献   

15.
The confinement of ionic liquids within a porous silica matrix was performed by a one-step non-hydrolytic sol-gel route, leading to hybrid materials (called "ionogels") featuring both the mechanical and transparency properties of silica gels and the high ionic conductivity and thermal stability of ionic liquids.  相似文献   

16.
In the last fifteen years several novel porous silica materials, which are periodically structured on the mesoscopic length scale, have been synthesized. They are of broad interest for fundamental studies of surface-substrate interactions, for studies of the dynamics of guest molecules in confinement and for studies of the effect of confinement on the structural and thermophysical properties of fluids. Examples of such confinement effects include the change of the freezing and melting points or glass transitions of the confined liquids. These effects are studied by combinations of several NMR techniques, such as (15)N- and (2)H-solid-state NMR line shape analysis, MAS NMR and NMR diffusometry with physico-chemical characterization techniques such as nitrogen adsorption and small angle diffraction of neutrons or X-rays. This combination does not require crystalline samples or special clean and well defined surfaces such as conventional surface science techniques, but can work with typical ill-defined real world systems. The review discusses, after a short introduction, the salient features of these materials and the applied NMR experiments to give the reader a basic knowledge of the systems and the experiments. The rest of the review then focuses on the structural and dynamical properties of guest molecules confined in the mesoporous silica. It is shown that the confinement into the pores leads to fascinating new features of the guests, which are often not known for their bulk phases. These features depend strongly on the interplay of the their interactions with the silica surface and their mutual interactions.  相似文献   

17.
Microphase separation and morphology of star ABC triblock copolymers confined between two identical parallel walls (symmetric wetting or dewetting) are investigated with self-consistent field theory (SCFT) combined with the "masking" technique to describe the geometric confinement of the films. In particular, we examine the morphology of confined near-symmetric star triblock copolymers under symmetric and asymmetric interactions as a function of the film thickness and the surface field. Under the interplay between the degree of spatial confinement, characterized by the ratio of the film thickness to bulk period, and surface field, the confined star ABC triblock copolymers are found to exhibit a rich phase behavior. In the parameter space we have explored, the thin film morphologies are described by four primary classes including cylinders, perforated lamellae, lamellae, and other complex hybrid structures. Some of them involve novel structures, such as spheres in a continuous matrix and cylinders with alternating helices structure, which are observed to be stable with suitable film thickness and surface field. In particular, complex hybrid network structures in thin films of bulk cylinder-forming star triblock copolymers are found when the natural domain period is not commensurate with the film thickness. Furthermore, a strong surface field is found to be more significant than the spatial confinement on changing the morphology of star triblock copolymers in bulk. These findings provide a guide to designing novel microstructures involving star triblock copolymers via geometric confinement and surface fields.  相似文献   

18.
We report the self‐consistent field theory (SCFT) of the morphology of lamella‐forming diblock copolymer thin films confined in two horizontal symmetrical/asymmetrical surfaces. The morphological dependences of thin films on the polymer‐surface interactions and confinement, such as film thickness and confinement spatial structure, have been systematically investigated. Mechanisms of the morphological transitions can be understood mainly through the polymer‐surface interactions and confinement entropy, in which the plat confinement surface provides a surface‐induced effect. The confinement is expressed in the form of the ratio D/L0, here D is film thickness, and L0 is the period of bulk lamellar‐structure. Much richer morphologies and multiple surface‐induced morphological transitions for the lamella‐forming diblock copolymer thin films are observed, which have not been reported before. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1–10, 2009  相似文献   

19.
The confinement of ionic liquids (room temperature molten salts) within a porous silica matrix was performed by a one-step non-hydrolytic sol–gel route, leading to hybrid materials featuring both the mechanic and transparency properties of silica gels and the high ionic conductivity of ionic liquids, as well as a thermal stability up to around 550 K. Butylmethylimidazolium [BMI] or butylpyridinium [BPy] as cations with bis(trifluorosulfonyl)imide [TFSI] or tetrafluoroborate [BF4] as anions along with a silica matrix showed similar properties.  相似文献   

20.
Methods for determining the substrate properties and the optical thickness of thin films or any variation in the refractive index of a fluid or film near a surface for unknown 5-layer symmetric and 3-layer asymmetric interferometers are presented. Both systems can be fully resolved without any known layer properties and without contact or confining the films. The method was tested using realistic simulated interferometer data, and was found to consistently yield accurate values for all desired properties. The method was experimentally validated through analysis of an asymmetric three layer interferometer system of linear polyethyleneimine (LPEI) adsorbed onto mica substrates of differing thickness and identical refractive index. The results were in excellent agreement with the dry polymer film properties measured using conventional SFA contact measurements. More complicated systems were also evaluated for feasibility, and any additional parameter specifications required for analysis were determined. The utility of this method is broad, as a single experiment in a laboratory setting can independently provide non-contact film properties and the effects of confinement on the film structure, which can be correlated to a simultaneously measured interaction force profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号