首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 84 毫秒
1.
采用气相色谱法和高效液相色谱法两种方法分别对克菌丹和灭菌丹进行定性定量分析。气相色谱法均以邻苯二甲酸二戊酯为内标物,色谱柱采用3%OV-101 chromosorb AW DMCS 150~177μm,1 m×3 mm玻璃柱,柱温为195℃,汽化温和检测温均为230℃,克菌丹和灭菌丹的回收率分别为99.2%~100.7%和98.8%~99.9%;方法相对标准偏差分别为0.46%和0.59%。高效液相色谱法中使用Nova-PaK C18250 mm×4.6 mm色谱柱,以V(甲醇)∶V(水)=85∶15为流动相,检测波长为225 nm。克菌丹和灭菌丹的回收率分别为99.5%~100.6%和98.9%~99.7%;方法相对标准偏差分别为0.68%和0.51%。  相似文献   

2.
固相萃取气相色谱法测定水果中克菌丹和灭菌丹   总被引:1,自引:0,他引:1  
采用硅镁吸附剂和硅胶作为混合固相萃取的净化方法,建立了固相萃取气相色谱法同时测定水果中克菌丹和灭菌丹的分析方法。研究了多种固相萃取柱和不同洗脱溶剂对克菌丹和灭菌丹保留行为的影响,优化了固相萃取净化方法及样品提取方法的分析条件。用GC-ECD检测,两种农药在0.05~2.0mg/L浓度范围内呈线性关系,相关系数大于0.997。苹果中4个浓度克菌丹和灭菌丹的加标回收率分别在100%~111%和104%~113%之间,RSD在3.0%~7.2%和2.8%~4.2%之间。在菠萝、草莓、梨和橙子中,克菌丹的平均回收率和RSD分别在95.6%~112%和2.5%~7.5%之间;灭菌丹在82.5%~96.4%和3.3%~8.0%之间,克菌丹和灭菌丹的方法检出限分别为0.012mg/kg和0.0056mg/kg。  相似文献   

3.
分散液相微萃取-气相色谱联用分析水样中菊酯类农药残留   总被引:16,自引:6,他引:16  
臧晓欢  王春  高书涛  周欣  王志 《分析化学》2008,36(6):765-769
将分散液-液微萃取(DLLME)与气相色谱-电子俘获检测(GC-ECD)技术相结合,建立了高灵敏度测定水样中7种菊酯类农药残留的新方法。对影响萃取富集效率的因素进行优化,萃取条件选定为:在5.0mL样品溶液中加入10.0μL氯苯和1.0mL丙酮,分散混匀后,以5000r/min离心5min,吸出萃取溶剂氯苯直接进样分析。在优化条件下7种菊酯类农药的富集倍数高达708~1087倍。以α-六六六为内标,7种菊酯类农药在0.8~600μg/L范围内具有良好的线性关系,线性相关系数在0.9990~0.9999之间;检出限为0.04~0.10μg/L(S/N=3)。本方法已应用于自来水、井水及河水等实际水样的分析,平均加标回收率在76.0%~116.0%之间;相对标准偏差在3.1%~7.2%之间。方法具有操作简单、富集效率高和灵敏度高等特点,可满足水样中菊酯类农药残留的检测要求。  相似文献   

4.
建立了环境水样中克菌丹残留量的固相微萃取-气相色谱-串联质谱联用(SPME-GC-MS/MS)检测方法.通过优化固相微萃取的条件对水样中的克菌丹进行富集,分析结果表明克菌丹在0.10~5.00 mg/L的质量浓度范围内线性关系良好,相关系数r2大于0.99,对农田灌溉水进行加标回收率试验,测定的低、中、高3种不同添加浓度的平均回收率分别为75.7%、79.1%和83.1%,相对标准偏差(RSD)在2.0%~3.4%范围内,检出限(LOD)为7.98μg/L.与传统溶剂萃取农药残留的方法相比,具有前处理简便、无溶剂污染等优点,同时方法准确度和精密度较好,可作为环境水样中克菌丹残留量的监测.  相似文献   

5.
采用硅镁吸附剂和硅胶作吸附剂,建立了固相萃取-高效液相色谱法同时测定苹果中残留的克菌丹和灭菌丹的分析方法。研究了甲醇-乙腈-水(含0.1 mmol/L乙酸-乙酸钠缓冲溶液(pH 3.80))三元体系下克菌丹和灭菌丹的最佳分离条件,在波长210 nm下检测,克菌丹和灭菌丹的线性范围为0.40~8.00 mg/kg,线性相关系数均大于0.9999;最低检出限克菌丹为0.27 mg/kg、灭菌丹为0.20 mg/kg;保留时间的相对标准偏差(RSD)≤0.60%。苹果样品中3个添加水平的平均加标回收率为克菌丹69.3%~106%,RSD为3.7%~4.7%;灭菌丹101%~108%,RSD为1.3%~5.4%。  相似文献   

6.
环境水样中百菌清残留的单滴微萃取-反相液相色谱测定   总被引:6,自引:1,他引:6  
应用单滴微萃取(SDME)-反相液相色谱(RPLC)检测了环境水样中的百菌清残留.优化了单滴微萃取条件:环己烷萃取剂6 μL、单滴体积2 μL、搅拌速率350 r/min、萃取时间40 min、水溶液温度35 ℃、无盐度.水样经单滴微萃取后,使用Hypersil C18柱反相液相色谱分离测定百菌清.反相液相色谱条件:100%甲醇流动相、流速1.0 mL/min、柱温25 ℃、224 nm检测.方法的线性范围、检出限、相对标准偏差和富集倍数分别为1.0 ~50 μg/L、0.02 μg/L、6.1%和427倍.采用该法对环境水样中的百菌清残留进行了测定,环境水样的加标回收率为98% ~106%.  相似文献   

7.
建立了分散液相微萃取/气相色谱-质谱快速检测蔬菜中农药残留的新方法.对影响萃取和富集效果的因素进行了优化.在优化的实验条件下,10种目标农药的富集倍数达738 ~895倍,检出限为0.005 ~0.06 mg/kg,线性范围为0.02 ~10 mg/kg,相关系数为0.991 2 ~0.998 7,平均加标回收率为71% ~90%,相对标准偏差为3.1% ~6.9%.该方法已成功用于蔬菜中10种农药残留的测定.  相似文献   

8.
将超声波萃取(USE)与分散液-液微萃取(DLLME)联合,利用气相色谱-电子捕获检测(GC-ECD),建立了一种高灵敏度检测水体中菌核净的新方法。对萃取的条件进行优化,选定萃取条件为:在5 mL样品中,注入1 mL丙酮和0.1 mL的四氯化碳混合液,20 Hz超声10 min,振荡混匀后高速离心5 min,移出下层溶剂低温吹干以丙酮定容自动进样分析。在优化条件下,样品的富集倍数可达50倍,检出限为0.001μg/mL,对采于蔬菜地边的水样进行加标回收率实验,平均回收率在81%以上,相对标准偏差在4.3%~7.6%之间,方法可满足水样中菌核净农药残留的检测要求。  相似文献   

9.
研究了用中空纤维膜液相微萃取-气相色谱质谱法测定水中的百菌清。通过实验确定最佳萃取条件为:萃取剂为甲苯,萃取剂用量3μL,水样体积10mL,萃取温度为45℃,萃取时间为15 min,搅拌速率为500 r/min,萃取后取1μL有机溶剂直接进样进行气相色谱质谱分离检测。在此条件下,百菌清的富集倍数为450倍,方法的线性范围为5~600μg/L,检出限为0.5μg/L。测定实际水样的加标回收率在92.3%~96.0%之间。该方法可以用于水中百菌清的快速检测。  相似文献   

10.
建立了基质固相分散萃取-分散液相微萃取-气相色谱质谱法测定土壤中3种拟除虫菊酯农药(胺菊酯、氯菊酯、溴氰菊酯)的分析方法。最佳前处理条件为:0.5 g样品与1.5 g C18固相萃取粉末研磨5 min,混合物以10 m L丙酮洗脱并浓缩至0.4 m L,加入20μL四氯化碳和5 m L超纯水形成乳化,离心破乳后吸取1μL沉积相进GC-MS分析。3种拟除虫菊酯类农药在5~200μg/kg范围内有良好的线性关系(r2≥0.9989),平均加标回收率为86.5%~108.0%,相对标准偏差小于7.8%(n=3),检出限为1.00~1.48μg/kg,可满足土壤中微量拟除虫菊酯类农药的分析。  相似文献   

11.
分散液液微萃取-气相色谱法快速测定水中23种有机磷农药   总被引:2,自引:0,他引:2  
建立了分散液液微萃取(DLLME)的新型样品前处理方法,并采用气相色谱/火焰光度检测器对饮用水中的治螟磷、甲拌磷、二嗪农、乙拌磷、甲基毒死蜱、甲基对硫磷、皮蝇磷、杀螟松、马拉硫磷、毒死蜱、倍硫磷、对硫磷、溴硫磷、嘧啶磷、甲基异硫磷、稻丰散、杀扑磷、丙溴磷、乙硫磷、三唑磷、三硫磷、哒嗪硫磷、亚胺硫磷23种痕量有机磷农药残...  相似文献   

12.
建立了简便、快速、有效的分散液液微萃取-高效液相色谱法测定环境水样中2,4-二氯酚的分析方法。对萃取剂、分散剂的种类和体积、萃取时间、离心时间、盐浓度等影响萃取效率的因素进行了优化。方法的线性范围为1~500μg/L(r=0.9997),相对标准偏差(RSD)为3.8%(n=6),检出限为0.19μg/L。该法适用于环境水样中的痕量2,4-二氯酚的检测。  相似文献   

13.
用分散液液微萃取-气相色谱/质谱法测定水样中的16种多环芳烃(PAHs)。通过实验确定最佳萃取条件为:20μL四氯化碳作萃取剂,1.0 mL乙腈作分散剂,超声萃取1 min。在优化条件下,多环芳烃的富集倍数达到216~511,方法在0.05~50μg/L范围内呈良好的线性关系,相关系数(R2)在0.9873~0.9983之间,检出限为0.0020~0.14μg/L。相对标准偏差(RSD)在3.82%~12.45%(n=6)之间。该方法成功用于实际水样中痕量多环芳烃的测定。  相似文献   

14.
丁宗庆  张琼瑶  刘光东 《化学学报》2009,67(17):1962-1966
研究了分散液液微萃取-数码比色法测定水样中的痕量钒. 在酸性介质中, 痕量钒(V)和N-苯甲酰-N-苯基羟胺(BPHA)作用, 生成紫红色螯合物, 用乙醇做分散剂, 以三氯甲烷为萃取剂进行分散液液微萃取, 萃取液点样在薄层硅胶板上用数码相机进行数码成像. 成像斑点的灰度值和钒(V)的浓度成正比, 据此建立了测定水样中痕量钒的新方法. 对影响萃取富集效率和数码成像效果的因素进行了优化. 钒(V)浓度在5.0~400 μg•L-1范围内有良好的线性关系(r=0.9993), 检出限为0.87 μg•L-1. 方法已应用于实际水样分析, 加标回收率在97.4%~102.7%之间, 相对标准偏差在1.7%~3.3%之间. 方法具有仪器成本低、方便快速、灵敏度高、环境友好等特点, 可满足野外现场的检测要求.  相似文献   

15.
建立了以分散固相萃取-超声辅助分散液液微萃取为样品前处理技术,结合高效液相色谱法(HPLC)测定土壤中溴氰菊酯。样品用甲醇∶水(1∶4,V/V)提取,经布氏漏斗减压抽滤,滤液经N-丙基乙二胺(PSA)、C18、石墨炭黑粉(GCB)净化后,用氯仿萃取,超声,离心后沉积相进行HPLC测定。对分散固相萃取吸附剂的选择及影响分散液液微萃取的因素进行了优化,在最优条件下,溴氰菊酯的富集倍数达到565倍,线性范围为0.005~2.5mg/kg,线性相关系数为0.9998,检出限为0.001mg/kg,平均加标回收率为70.3%~94.5%,相对标准偏差为2.5%~4.7%。该方法具有简便快速、准确灵敏、萃取效率高等特点,可用于土壤中溴氰菊酯残留检测。  相似文献   

16.
建立了分散液液微萃取-气相色谱电子捕获检测器测定水中15种硝基苯类物质的方法.筛选出了具有高密度且能够适用于电子捕获检测器的萃取剂.优化了色谱条件,对萃取剂种类及用量、分散剂种类及用量、萃取时间、萃取温度等条件进行了优化.DB-35毛细管柱对15种硝基苯类物质具有最好的分离效果.使用程序升温,初始80℃ 保持2 min,以5℃/min速率升温至180℃,可以在22 min内完成分离.以100μL氯苯作为萃取剂、400μL甲醇作为分散剂,对5.00 mL水样在室温下进行萃取,仅需30 s即可达到萃取平衡,15种目标物的萃取率均可达到90%以上,富集倍数达到45.0~48.8.离心分离,取下层沉积相进行气相色谱测定,使用电子捕获检测器检测,方法的定量限为0.03~0.15μg/L,线性范围为0.20~50.0μg/L,相关系数不低于0.998.方法的相对标准偏差在3.3%~8.9%之间,加标回收率在86.0%~103.5%之间.  相似文献   

17.
The residues and abuse of antibiotics have seriously endangered ecological balance and human health; meanwhile, antibiotics determination is very difficult because of their low levels and multiple categories in complicated matrices. Appropriate sample pretreatment is usually imperative to enrich (ultra)trace antibiotics and eliminate matrix interference prior to chromatographic analysis. Dispersive liquid-liquid microextraction (DLLME) has become an ideal pretreatment technique owing to its simplicity, effectiveness, low-consumption, etc. In this work, an ultrasonic-assisted DLLME (UA-DLLME) was developed for the simultaneous extraction of seven sulfonamides (SAs) antibiotics in environmental water and seafood samples coupled with HPLC-DAD determination. Several parameters affecting UA-DLLME efficiency were systematically optimized, and consequently the SAs were separated and detected within 14.5 min. The obtained limits of detection (LODs) and limits of quantification (LOQs) ranged from 0.7–7.8 μg/L and 2.4–26.0 μg/L for three water samples (seawater, aquaculture wastewater and lake water) and two seafood samples (pomfrets and shrimps). High recoveries (80.0–116.0%) with low relative standard deviations (0.1–8.1%) were achieved for all the tested samples at three spiked levels. Notably, sulfadimethoxine was found at 24.49 μg/L in one seawater sample. The facile, robust and benign DLLME-HPLC method demonstrated promising perspectives for multiresidue analysis of antibiotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号