首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new one-dimensional chain complex, Mn(hfac)(2)-bridged [2-(3-pyridyl)(nitronyl nitroxide)Mn(hfac)(2)](2), was prepared and its structure and magnetic properties were elucidated; the complex exhibited a large antiferromagnetic interaction of J(1)=-185 K between the three Mn(ii) atoms and the two nitronyl nitroxides to give S=13/2 spin units and a small ferromagnetic interaction of J(3)'=+0.02 K between these spin units at low temperatures (50-1.9 K), compatible with the theoretical analysis for model compounds.  相似文献   

2.
The crystal structure of the spin crossover complex [Fe(2-pic)3]Cl2·EtOH in its high spin state (298, 150 K) and low spin state (90 K) has been determined. The crystals are monoclinic, P21/c with Z=4 in the two spin states. Pronounced changes in the FeN bond distance (2.195 A for high spin, 2.013 A for low spin on average) and orientational disorder of the ethanol molecule were observed. The complexes and ethanols are both hydrogen bounded to Cl? ions.  相似文献   

3.
An unprecedented atom connectivity, MnIV(mu-O)MnIV(mu-O)2MnIV(mu-O)MnIV, is found in the complex [MnIV4O4(EtO-terpy)4(OH)2(OH2)2](ClO4)(6).8H2O (EtO-terpy=4'-ethoxyl-2,2':6',2' '-terpyridine), which has been characterized by X-ray crystallography, X-ray powder diffraction, EPR spectroscopy, and magnetic studies. This complex is the first example of a compound where a MnIV ion is coordinated by all three types of water-derived ligands: oxo, hydroxo, and aqua. Bond distances and angles for this complex are consistent with a MnIV4 oxidation state assignment. The di-mu-oxo- and mono-mu-oxo-bridged Mn-Mn distances are 2.80 and 3.51 A, respectively. The variable-temperature magnetic susceptibility data for this complex, in the range of 10-300 K, are consistent with an S=0 ground state and were fit using the spin Hamiltonian HHDvV=-J1S2S1-J2S1S1A-J1S1AS2A (S1=S1A=S2=S2A=3/2) with J1=-432 cm-1 and J2=-164 cm-1 (where J1 and J2 are exchange constants through the mono-mu-oxo and the di-mu-oxo bridges, respectively). The first excited spin state of this tetramer is a spin triplet state at 279 cm-1 above the diamagnetic ground state. The next spin states are the S=1 and S=2 levels at about 700 and 820 cm-1 above the S=0 ground state, respectively. These large energy gaps are consistent with the absence of an EPR signal for this complex, even at high temperature.  相似文献   

4.
A series of polynuclear mixed-ligand tris(pyrazolyl)methane iron(II) complexes displaying high temperature spin crossover behaviour has been synthesised. These complexes are of the type [(Fe((3,5-Me(2)pz)(3)CH))(n)(μ-L)](BF(4))(2n), where μ-L is one of five bridging ligands X(CH(2)OCH(2)C(pz)(3))(n), (X = the central linking moiety, pz = pyrazolyl ring and n = 2 (ditopic), 3 (tritopic) or 4 (tetratopic)). Throughout the series the terminal tris(3,5-dimethylpyrazolyl)methane co-ligand (3,5-Me(2)pz)(3)CH and the BF(4)(-) counter anion were kept constant while variations in the central linking moiety have produced three dinuclear complexes and a trinuclear and tetranuclear complex, all isolated as solvates. The three dinuclear complexes are a 1,4-xylene-bridged complex 1·2DME, a 2,6-naphthalene-bridged complex 2·2.5MeCN.2DME and a 1,4-butene-bridged complex 3·2DME. The trinuclear complex 4·solvent (solvent undefined) has a 1,3,5-mesitylene core and the tetranuclear complex, 5·8MeCN.2(t)BuOMe, has a 1,2,4,5-tetramethylbenzene core (DME = dimethoxyethane, (t)BuOMe = tertiarybutyl-methylether). The trinuclear cluster has a "3-up" cup shape with the cups arranging themselves in pairs to form capsules that contain anion guests. All the solvated compounds have been structurally characterised and both the solvated and desolvated versions have had their magnetic and thermal properties thoroughly investigated by variable temperature magnetic susceptibility, differential scanning calorimetric and M?ssbauer spectral methods. They all display typical low spin iron(II) magnetic behaviour at room temperature and all undergo a spin state transition to high spin iron(II) above room temperature. In particular, complex 1·2DME shows an abrupt spin transition which shifts, upon desolvation, to a lower value of T(1/2) and in addition displays a small thermal hysteresis.  相似文献   

5.
The complex Mn2(H2O)(OAc)4(tmeda)2 (tmeda = N,N,N',N'-tetramethylethylenediamine) is a model for the active site of hydrolase enzymes containing acetate-bridged dimanganese cores. The two high-spin Mn(II) ions are antiferromagnetically coupled, as determined by previous magnetic susceptibility studies (Yu, S.-B; Lippard, S. J.; Shweky, I; Bino, A. Inorg. Chem. 1992, 31, 3502-3504) to yield a spin "ladder" with total spin S = 0, 1, 2, ..., 5 in increasing energy. In this study, the complex was characterized by Q-band and X-band EPR spectroscopy in frozen solution. Analysis of the temperature dependence of these EPR spectra indicates that the primary spectral contribution is from the S = 2 manifold. The EPR spectra were simulated using a full spin Hamiltonian for this manifold of a coupled spin system, which provided the fit parameters J = -2.9 cm-1, g = 2.00, and D2 = -0.060 +/- 0.003 cm-1. An additional multiline EPR signal is observed which is proposed to arise from the total spin S = 5/2 ground state of a Mn(II) trimer of the type Mn3(OAc)6(tmeda)2.  相似文献   

6.
A new series of transition-metal complexes of Schiff base ligand containing the amino mercapto triazole moiety ( HL ) was prepared. The Schiff base and its metal complexes were elucidated by different spectroscopic techniques (infrared [IR], 1H nuclear magnetic resonance, UV–Visible, mass, and electron spin resonance [ESR]), and magnetic moment and thermal studies. Quantum chemical calculations have been carried out to study the structure of the ligand and some of its complexes. The IR spectra showed that the ligand is chelated with the metal ion in a neutral, tridentate, and bidentate manner using NOS and NO donors in complexes 1 – 6 , 10–12 , and 7 and 8 , respectively, whereas it behaves in a monobasic tridentate fashion using NOS donor sites in copper(II) nitrate complex ( 9 ). The magnetic moment and electronic spectra data revealed octahedral and square pyramidal geometries for complexes 2 , 11 , 12 , and 5 – 8 and 10 , respectively. However, the other complexes were found to have tetrahedral ( 4 ), trigonal bipyramidal ( 1 and 3 ), and square planar ( 9 ) structures. Thermal studies revealed that the chelates with different crystallized solvents undergo different types of interactions and the decomposition pathway ended with the formation of metal oxygen (MO) and metal sulfur (MS) as final products. The ESR spectrum of copper(II) complex 10 is axial in nature with hyperfine splitting with 2B1g as a ground state. By contrast, complexes 7 and 8 undergo distortion around the Cu(II) center, affording rhombic ESR spectra. The HL ligand and some of its complexes were screened against two bacterial species. Data showed that complex 12 demonstrated a better antibacterial activity than HL ligand and other chelates.  相似文献   

7.
Zhao JP  Hu BW  Lloret F  Tao J  Yang Q  Zhang XF  Bu XH 《Inorganic chemistry》2010,49(22):10390-10399
By changing template cation but introducing trivalent iron ions in the known niccolite structural metal formate frameworks, three complexes formulated [NH(2)(CH(3))(2)][Fe(III)M(II)(HCOO)(6)] (M = Fe for 1, Mn for 2, and Co for 3) were synthesized and magnetically characterized. The variation in the compositions of the complexes leads to three different complexes: mixed-valent complex 1, heterometallic but with the same spin state complex 2, and heterometallic heterospin complex 3. The magnetic behaviors are closely related to the divalent metal ions used. Complex 1 exhibits negative magnetization assigned as Ne?el N-Type ferrimagnet, with an asymmetric magnetization reversal in the hysteresis loop, and complex 2 is an antiferromagnet with small spin canting (α(canting) ≈ 0.06° and T(canting) = 35 K), while complex 3 is a ferrimagnet with T(N) = 32 K.  相似文献   

8.
A 2D iron(II) spin crossover complex, [FeII(HLH,Me)2](ClO4)2.1.5MeCN (1), was synthesized, where HLH,Me = imidazol-4-yl-methylidene-8-amino-2-methylquinoline. 1 showed a gradual spin transition between the HS (S = 2) and LS (S = 0) states from 180 to 325 K within the first warming run from 5 to 350 K, in which 1.5MeCN is removed, and there was an abrupt spin transition at T1/2 downward arrow = 174 K in the first cooling run from 350 to 5 K. Following the first cycle, the compound showed an abrupt spin transition at T1/2 upward arrow = 185 K and T1/2 downward arrow = 174 K with 11 K wide hysteresis in the second cycle. The crystal structures of 1 were determined at 296 (an intermediate between the HS and LS states) and 150 K (LS state). The structure consists of a 2D extended structure constructed of both the bifurcated NH...O- hydrogen bonds between two ClO4- ions and two neighboring imidazole NH groups of the [FeII(HLH,Me)2]2+ cations and the pi-pi interactions between the two quinolyl rings of the two adjacent cations. Thermogravimetric analysis showed that solvent molecules are gradually eliminated even at room temperature and completely removed at 369 K. Desolvated complex 1' showed an abrupt spin transition at T1/2 upward arrow = 180 K and T1/2 downward arrow = 174 K with 6 K wide hysteresis.  相似文献   

9.
The bis(o-iminobenzosemiquinonato)copper(II) complex 1, containing the radical form [L(*)SQ](1-) arising from the aerial oxidation of the noninnocent ligand 2-anilino-4,6-di- tert-butylphenol, H2L, is readily oxidized by molecular bromine to a bis(o-iminobenzoquinone)copper(II) complex, 2. Thus, a ligand-based oxidative addition is reported for complex 1 containing an electron-rich Cu(II) d(9) metal ion. The crystal structure of the synthesized hexacoordinated complex [Cu(II)(LBQ)2Br2] (2) has been determined by X-ray crystallography at 100 K. Variable-temperature (2-290 K) magnetic susceptibility measurements and an X-band electron paramagnetic resonance spectrum establish the spin state to be St = 1/2 because of localized spin moments mainly in the (d(x(2)-y(2)))(1) orbital of a Cu(II) d(9) ion, indicating clearly the presence of a neutral iminobenzoquinone form, [LBQ](0), of the ligand in 2, as is found also in the X-ray structure. Electrochemical measurements (cyclic voltammograms and coulometry) indicate two successive one-electron reductions of the ligand. The reactivity of complex 2 as an oxidizing agent toward ethanol and triethylamine has been investigated.  相似文献   

10.
A comprehensive study of the magnetic and photomagnetic behaviors of cis‐[Fe(picen)(NCS)2] (picen=N,N′‐bis(2‐pyridylmethyl)1,2‐ethanediamine) was carried out. The spin‐equilibration was extremely slow in the vicinity of the thermal spin‐transition. When the cooling speed was slower than 0.1 K min?1, this complex was characterized by an abrupt thermal spin‐transition at about 70 K. Measurement of the kinetics in the range 60–70 K was performed to approach the quasi‐static hysteresis loop. At low temperatures, the metastable HS state was quenched by a rapid freezing process and the critical T(TIESST) temperature, which was associated with the thermally induced excited spin‐state‐trapping (TIESST) effect, was measured. At 10 K, this complex also exhibited the well‐known light‐induced excited spin‐state‐trapping (LIESST) effect and the T(LIESST) temperature was determined. The kinetics of the metastable HS states, which were generated from the freezing effect and from the light‐induced excitation, was studied. Single‐crystal X‐ray diffraction as a function of speed‐cooling and light conditions at 30 K revealed the mechanism of the spin‐crossover in this complex as well as some direct relationships between its structural properties and its spin state. This spin‐crossover (SCO) material represents a fascinating example in which the metastability of the HS state is in close vicinity to the thermal spin‐transition region. Moreover, it is a beautiful example of a complex in which the metastable HS states can be generated, and then compared, either by the freezing effect or by the LIESST effect.  相似文献   

11.
A series of bis(alpha-iminopyridine)metal complexes featuring the first-row transition ions (Cr, Mn, Fe, Co, Ni, and Zn) is presented. It is shown that these ligands are redox noninnocent and their paramagnetic pi radical monoanionic forms can exist in coordination complexes. Based on spectroscopic and structural characterizations, the neutral complexes are best described as possessing a divalent metal center and two monoanionic pi radicals of the alpha-iminopyridine. The neutral M(L*)2 compounds undergo ligand-centered, one-electron oxidations generating a second series, [(L(x))2M(THF)][B(ArF)4] [where L(x) represents either the neutral alpha-iminopyridine (L)0 and/or its reduced pi radical anion (L*)-]. The cationic series comprise mostly mixed-valent complexes, wherein the two ligands have formally different redox states, (L)0 and (L*)-, and the two ligands may be electronically linked by the bridging metal atom. Experimentally, the cationic Fe and Co complexes exhibit Robin-Day Class III behavior (fully delocalized), whereas the cationic Zn, Cr, and Mn complexes belong to Class I (localized) as shown by X-ray crystallography and UV-vis spectroscopy. The delocalization versus localization of the ligand radical is determined only by the nature of the metal linker. The cationic nickel complex is exceptional in this series in that it does not exhibit any ligand mixed valency. Instead, its electronic structure is consistent with two neutral ligands (L)0 and a monovalent metal center or [(L)2Ni(THF)][B(ArF)4]. Finally, an unusual spin equilibrium for Fe(II), between high spin and intermediate spin (S(Fe) = 2 <--> S(Fe) = 1), is described for the complex [(L*)(L)Fe(THF)][B(ArF)4], which consequently is characterized by the overall spin equilibrium (S(tot) = 3/2 <--> S(tot) = 1/2). The two different spin states for Fe(II) have been characterized using variable temperature X-ray crystallography, EPR spectroscopy, zero-field and applied-field M?ssbauer spectroscopy, and magnetic susceptibility measurements. Complementary DFT studies of all the complexes have been performed, and the calculations support the proposed electronic structures.  相似文献   

12.
Triply switchable [Co(II)(dpzca)(2)] shows an abrupt, reversible, and hysteretic spin crossover (T(1/2)↓ = 168 K, T(1/2)↑ = 179 K, and ΔT(1/2) = 11 K) between the high-spin (HS) and low-spin (LS) states of cobalt(II), both of which have been structurally characterized. The spin transition is also reversibly triggered by pressure changes. Moreover, in a third reversible switching mechanism for this complex, the magnetic properties can be switched between HS cobalt(II) and LS cobalt(III) by redox.  相似文献   

13.
A series of d‐block metal complexes of the recently reported coordinating neutral radical ligand 1‐phenyl‐3‐(pyrid‐2‐yl)‐1,4‐dihydro‐1,2,4‐benzotriazin‐4‐yl ( 1 ) was synthesized. The investigated systems contain the benzotriazinyl radical 1 coordinated to a divalent metal cation, MnII, FeII, CoII, or NiII, with 1,1,1,5,5,5‐hexafluoroacetylacetonato (hfac) as the auxiliary ligand of choice. The synthesized complexes were fully characterized by single‐crystal X‐ray diffraction, magnetic susceptibility measurements, and electronic structure calculations. The complexes [Mn( 1 )(hfac)2] and [Fe( 1 )(hfac)2] displayed antiferromagnetic coupling between the unpaired electrons of the ligand and the metal cation, whereas the interaction was found to be ferromagnetic in the analogous NiII complex [Ni( 1 )(hfac)2]. The magnetic properties of the complex [Co( 1 )(hfac)2] were difficult to interpret owing to significant spin–orbit coupling inherent to octahedral high‐spin CoII metal ion. As a whole, the reported data clearly demonstrated the favorable coordinating properties of the radical 1 , which, together with its stability and structural tunability, make it an excellent new building block for establishing more complex metal–radical architectures with interesting magnetic properties.  相似文献   

14.
A dinuclear CoII complex, [Co2(tphz)(tpy)2]n+ (n=4, 3 or 2; tphz: tetrapyridophenazine; tpy: terpyridine), has been assembled using the redox‐active and strongly complexing tphz bridging ligand. The magnetic properties of this complex can be tuned from spin‐crossover with T1/2≈470 K for the pristine compound (n=4) to single‐molecule magnet with an ST=5/2 spin ground state when once reduced (n=3) to finally a diamagnetic species when twice reduced (n=2). The two successive and reversible reductions are concomitant with an increase of the spin delocalization within the complex, promoting remarkably large magnetic exchange couplings and high‐spin species even at room temperature.  相似文献   

15.
A dinuclear CoII complex, [Co2(tphz)(tpy)2]n+ (n=4, 3 or 2; tphz: tetrapyridophenazine; tpy: terpyridine), has been assembled using the redox‐active and strongly complexing tphz bridging ligand. The magnetic properties of this complex can be tuned from spin‐crossover with T1/2≈470 K for the pristine compound (n=4) to single‐molecule magnet with an ST=5/2 spin ground state when once reduced (n=3) to finally a diamagnetic species when twice reduced (n=2). The two successive and reversible reductions are concomitant with an increase of the spin delocalization within the complex, promoting remarkably large magnetic exchange couplings and high‐spin species even at room temperature.  相似文献   

16.
The electronic structure and magnetic properties of the manganese(IV) trihydrazide propeller complex, Li(2)Mn(κ(2)-PhN-NPh)(3)L(2) (1, L = tetrahydrofuran, diethyl ether), are explored. EPR and solid-state magnetometry studies are indicative of a high spin Mn(IV) with a S = 3/2 spin state. Solution-phase magnetic measurements result in a measured μ(eff) less than that expected for a S = 3/2, indicating a solution-phase equilibrium with a lower-spin species. Concentration-dependent magnetic susceptibility measurements identify clustering of 1 to an antiferromagnetically coupled multinuclear complex as the most likely explanation for the solution behavior. Comparative infrared spectroscopy in solution and solid phase are described which support speciation in solution.  相似文献   

17.
The electronic properties of the isostructural series of heterotrinuclear thiophenolate-bridged complexes of the general formula [LFeMFeL](n)(+) with M = Cr, Co and Fe where L represents the trianionic form of the ligand 1,4,7-tris(4-tertbutyl-2-mercaptobenzyl)-1,4,7-triazacyclononane, synthesized and investigated by a number of experimental techniques in the previous work(1), are subjected now to a theoretical analysis. The low-lying electronic excitations in these compounds are described within a minimal model supported by experiment and quantum chemistry calculations. It was found indeed that various experimental data concerning the magnetism and electron delocalization in the lowest states of all seven compounds are completely reproduced within a model which includes the electron transfer between magnetic orbitals at different metal centers and the electron repulsion in these orbitals (the Hubbard model). Moreover, due to the trigonal symmetry of the complexes, only the electron transfer between nondegenerate orbital, a(1), originating from the t(2g) shell of each metal ion in a pseudo-octahedral coordination, is relevant for the lowest states. An essential feature resulting from quantum chemistry calculations, allowing to explain the unusual magnetic properties of these compounds, is the surprisingly large value and, especially, the negative sign of the electron transfer between terminal iron ions, beta'. According to their electronic properties the series of complexes can be divided as follows: (1). The complexes [LFeFeFeL](3+) and [LFeCrFeL](3+) show localized valences in the ground electronic configuration. The strong antiferromagnetic exchange interaction and the resulting spin 1/2 of the ground-state arise from large values of the transfer parameters. (2). In the complex [LFeCrFeL](+), due to a higher energy of the magnetic orbital on the central Cr ion than on the terminal Fe ones, the spin 3/2 and the single unpaired a(1) electron are almost localized at the chromium center in the ground state. (3). The complex [LFeCoFeL](3+) has one ground electronic configuration in which two unpaired electrons are localized at terminal iron ions. The ground-state spin S = 1 arises from a kinetic mechanism involving the electron transfer between terminal iron ions as one of the steps. Such a mechanism, leading to a strong ferromagnetic interaction between distant spins, apparently has not been discussed before. (4). The complex [LFeFeFeL](2+) is characterized by both spin and charge degrees of freedom in the ground manifold. The stabilization of the total spin zero or one of the itinerant electrons depends on beta', i.e., corresponds to the observed S = 1 for its negative sign. This behavior does not fit into the double exchange model. (5). In [LFeCrFeL](2+) the delocalization of two itinerant holes in a(1) orbitals takes place over the magnetic core of chromium ion. Although the origin of the ground-state spin S = 2 is the spin dependent delocalization, the spectrum of the low-lying electronic states is again not of a double exchange type. (6). Finally, the complex [LFeCoFeL](2+) has the ground configuration corresponding to the electron delocalization between terminal iron atoms. The estimated magnitude of the corresponding electron transfer is smaller than the relaxation energy of the nuclear distortions induced by the electron localization at one of the centers, leading to vibronic valence trapping observed in this compound.  相似文献   

18.
Dinuclear copper complex with biradicals [Cu(hfac)2]2PhBNM(PhBNM = 2,5-bimethyl-1,4-bis(4,4,5,5-tetramethyllimidazoline-1-oxyl-3-oxide)phenyl,hfac=hexafluoroacetylacetonate) has been synthesized and characterized. It crystallized in the monoclinic system, with space group C2/c, a=1.9012(4), b=1.3718(3), c=2.1620(4) nm, β=97.55(3)°, Z=4. The X-ray structure analysis shows that the molecular structure consists of two kinds of conformations. The ratio of them is 7:3. The energy of two conformations, calculated with molecular mechanics, are different, E1=740 kJ/mol, and E2=771 kJ · mol-1. The CNDO/k results on the complex indicate that the orbital energy of low spin state is lower than that of high spin state, which correspond with the results of magnetic measurement.  相似文献   

19.
Reaction of iron(II) and the 3 : 1 Schiff base condensate of 5-methylpyrazole-3-carboxaldehyde and tris(2-aminoethyl)amine in air gives a pseudo-dimer complex with a triple helix structure made of Delta-Delta and Lambda-Lambda pairings of spin crossover iron(II) and low spin iron(III) cations that are held together by three pi-pi and hydrogen bonding interactions.  相似文献   

20.
An extended family of heterometallic [(M1)2(M2)2(L-)4](n+) [2x2] grid-type arrays 1-9 has been prepared. The three-tiered synthetic route encompasses regioselective, redox and enantioselective features and is based on the stepwise construction of heteroditopic hydrazone ligands A-C. These ligands contain ionisable NH and nonionisable NMe hydrazone units, which allows the metal redox properties to be controlled according to the charge on the ligand binding pocket. The 2-pyrimidine (R) and 6-pyridine (R') substituents have a significant effect on complex geometry and influence both the electrochemical and magnetic behaviour of the system. 1H NMR spectroscopic studies show that the Fe(II) ions in the grid can be low spin, high spin or spin crossover depending on the steric effect of substituents R and R'. This steric effect has been manipulated to construct an unusual array possessing two low-spin and two spin-crossover Fe(II) centres (grid 8). Electrochemical studies were performed for the grid-type arrays 1-9 and their respective mononuclear precursor complexes 10-13. The grids function as electron reservoirs and display up to eight monoelectronic, reversible reduction steps. These processes generally occur in pairs and are assigned to ligand-based reductions and to the Co(III)/Co(II) redox couple. Individual metal ions in the heterometallic grid motif can be selectively addressed electrochemically (e.g., either the Co(III) or Fe(II) ions can be targeted in grids 2 and 5). The Fe(II) oxidation potential is governed by the charge on the ligand binding unit, rather than the spin state, thus permitting facile electrochemical discrimination between the two types of Fe(II) centre in 7 or in 8. Such multistable heterometallic [2x2] gridlike arrays are of great interest for future supramolecular devices incorporating multilevel redox activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号