首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
梯度回波序列是磁共振成像中常用的脉冲序列,然而梯度回波对主磁场波动非常敏感,呼吸等生理运动引起的信号波动会导致图像伪影.该文报道了采用导航回波技术获取呼吸运动导致的局部磁场波动,用以矫正图像回波中随时间变化的相位波动,并将该技术应用于三维多回波梯度回波成像和T2*定量图研究.研究结果显示:矫正前,相位波动幅度随回波时间增长而增大,模图和T2*定量图在相位编码方向有明显伪影,并且男女呼吸伪影水平有显著性差异;矫正后,相位波动幅度大幅下降,图像伪影水平有显著性下降.  相似文献   

3.
An extension of the RARE technique has been developed which acquires multiple images from a single radio-frequency excitation. This pulse sequence has been used to image, in real-time, gas flow through stagnant liquid within parallel-channel ceramic monoliths. From these images, gas-phase volume fractions, and distributions of gas bubble length and velocity as a function of gas flow rate (50-300 cm3 min(-1)) and channel size (300 and 400 channels per square inch, cpsi) are obtained directly. Increasing the gas flow rate increased the number of large bubbles and the average bubble velocity. A bimodal distribution in the bubble velocities was observed for flow within the larger channel size (300 cpsi) in contrast to a broad unimodal distribution characterizing two-phase flow within the smaller channel size (400 cpsi).  相似文献   

4.
For over a decade, echo-planar imaging (EPI) has been used in both the medical and applied sciences to capture velocity fields of fluid flows. However, previous studies have not rigorously confirmed the accuracy of the measurements or sought to understand the limitations of the technique. In this study, a bipolar gradient was added to a flow-compensated EPI pulse sequence to obtain rapid phase contrast images of steady and unsteady flows through two step stenoses. For steady Re = 100 and 258 flows, accuracy was measured through systematic comparisons with CFD simulations, mass flow rate measurements, and spin echo phase contrast images. On average, the EPI image data exhibited velocity errors of 5 to 10 percent, while mass was conserved to within 5.6 percent at each axial position. Compared to spin-echo phase contrast images, the EPI images have 50 percent lower signal-to-noise ratio, larger local velocity errors, and similar mass conservation characteristics. An unsteady flow was then examined by starting a pump and allowing it to reach a steady Re = 100 flow. Accuracy in this case was measured by the consistency between mass flow rate measurements at different axial positions. Images taken at 0.3 s intervals captured the velocity field evolution and showed that 50 to 100 percent errors occur when the flow changes on a time scale faster than the image acquisition time.  相似文献   

5.
The measurement of spatially resolved velocity distributions is crucial for modelling flow and for understanding properties of materials produced in extrusion processes. Traditional methods for flow visualization such as particle image velocimetry (PIV) rely on optically transparent media and cannot be applied to turbid polymer melts. Here we present optical coherence tomography as an imaging technique for PIV data processing that allows for measuring a sequence of time resolved images even in turbid media. Time-resolved OCT images of a glass-fibre polymer compound were acquired during an extrusion process in a slit die. The images are post-processed by ensemble cross-correlation to calculate spatially resolved velocity vector fields. The results compared well with velocity data obtained by Doppler-OCT. Overall, this new technique (OCT-PIV) represents an important extension of PIV to turbid materials by the use of OCT.  相似文献   

6.
Spin dislocation between the slice selection, phase encoding, and frequency encoding is a source of image distortions. Two strategies can be pursued to improve the appearance of moving spins in an image. Either the sequence is made equally sensitive to velocity-dependent dislocation artifacts for all spatial directions or the sensitivity is reduced with a shorter echo time. The first approach increases the dislocation for the phase-encoding direction and is therefore not useful if velocity maps with minimal distortion are the goal. FAcE (FID acquired echoes) is a sequence with separate sampling of the left and right k-space half-planes that allows for very short echo times. It was applied for velocity mapping of flow in the slice select direction. Special attention was paid to a compact design of the velocity-encoding select gradient to achieve short echo times even with high velocity sensitivity. Artifacts introduced by in-plane motion were studied for FAcE and conventional gradient-echo sequences, both in phantom experiments and simulation. FAcE allows for very short echo times with inherent motion compensation of the frequency-encoding gradient. Thus, both motion-related dislocation artifacts and signal voids due to coherence loss in regions with irregular flow are minimal.  相似文献   

7.
A rapid version of PEPI (pi-echo planar imaging) velocimetry has been implemented, enabling a velocity image, at microscopic resolution, to be acquired in less than 1 s. The velocity map was reconstructed using the phase information from the ratio of two PEPI images, one obtained with a velocity-encoding filter applied prior to the imaging sequence and the other image without. The acquisition time for each image was about 80 ms and the two complete image acquisitions were acquired in one shot in 500 ms. This rapid velocimetry sequence gave a good representation of laminar pipe flow. It has also been used to examine extensional flow in a biaxial extension in which the transient extension takes about 3 s.  相似文献   

8.
The aim of the present study was to obtain the precision of flow measurement in breath-hold segmented k-space flow sequences. The results are based on studies of pulsatile flow in a phantom tube. The ultimate purpose is to use these sequences to measure coronary flow. In abdominal and cardiothoracic magnetic resonance imaging the image quality is degraded due to respiratory motion. In the segmented k-space acquisition method, one obtains many phase-encoding steps or views per cardiac phase. This shortens imaging time in the order of phase-encoding lines and makes it possible to image in a single breath-hold, thereby eliminating respiratory artefacts and improving edge detection. With breath-hold multiframe cine flow images it is possible to evaluate flow in all abdominal and cardiothoracic areas, including the coronary arteries. Our study shows that velocity curves shift in time when the number of k-space ky-lines per segment (LPS) are varied; this shift is linear as a function of LPS. The mean velocity Vmean in the center of mass of the pulsatile peak is constant (Vmean = 40.1 ± 2.9 cm/s) and time t = −10.1 × LPS + 268 (r = 0.993, p < 0.0001). Correlation between theoretical and experimental flow curves is also linear as a function of LPS: C = −0.977 1 LPS (r = 0.987, p < 0.0001). It is concluded that velocity curves move with LPS and are smoothed when the breath-hold velocity mapping is used. The more LPS is gathered the more inaccurate results are. LPS 7 or more cannot be considered clinically relevant.  相似文献   

9.
Magnetic resonance imaging (MRI) is well suited for small animal model investigations to study various human pathologies. However, the assessment of microscopic information requires a high-spatial resolution (HSR) leading to a critical problem of signal-to-noise ratio limitations in standard whole-body imager. As contrast mechanisms are field dependent, working at high field do not allow to derive MRI criteria that may apply to clinical settings done in standard whole-body systems. In this work, a contrast-enhanced dynamic MRI protocol with improved spatial and time resolution was used to perform in vivo tumor model imaging on the mouse at 1.5 T. The needed sensitivity is provided by the use of a 12-mm superconducting surface coil operating at 77 K. High quality in vivo images were obtained and revealed well-defined internal structures of the tumor. A 3-D HSR sequence with voxels of 59x59x300 microm3 encoded within 6.9 min and a 2-D sequence with subsecond acquisition time and isotropic in-plane resolution of 234 microm were used to analyze the contrast enhancement kinetics in tumoral structures at long and short time scales. This work is a first step to better characterize and differentiate the dynamic behavior of tumoral heterogeneities.  相似文献   

10.
With improved B 0 homogeneity along with satisfactory gradient performance at high magnetic fields, snapshot gradient-recalled echo-planar imaging (GRE-EPI) would perform at long echo times (TEs) on the order of T2*, which intrinsically allows obtaining strongly T2*-weighted images with embedded substantial anatomical details in ultrashort time. The aim of this study was to investigate the feasibility and quality of long TE snapshot GRE-EPI images of rat brain at 9.4 T. When compensating for B 0 inhomogeneities, especially second-order shim terms, a 200 x 200 microm2 in-plane resolution image was reproducibly obtained at long TE (>25 ms). The resulting coronal images at 30 ms had diminished geometric distortions and, thus, embedded substantial anatomical details. Concurrently with the very consistent stability, such GRE-EPI images should permit to resolve functional data not only with high specificity but also with substantial anatomical details, therefore allowing coregistration of the acquired functional data on the same image data set.  相似文献   

11.
Ceramic monoliths, comprising arrays of parallel channels, are increasingly being considered as an alternative to conventional packed beds for chemical processing operations involving both single- and two-phase flows. This paper reports results obtained using a technique based on the rapid acquisition with relaxation enhancement (RARE) pulse sequence in which multiple images are obtained from a single r.f. excitation. The technique is applied to study single- and two-phase flow in a monolith rated at 200 channels per square inch (cpsi). A single image frame, acquired in 156 ms, provides a characterization of the heterogeneity in the magnitude and direction of the flow within the monolith.  相似文献   

12.
We have developed a novel phase-resolved optical coherence tomography (OCT) and optical Doppler tomography (ODT) system that uses phase information derived from a Hilbert transformation to image blood flow in human skin with fast scanning speed and high velocity sensitivity. Using the phase change between sequential scans to construct flow-velocity imaging, this technique decouples spatial resolution and velocity sensitivity in flow images and increases imaging speed by more than 2 orders of magnitude without compromising spatial resolution or velocity sensitivity. The minimum flow velocity that can be detected with an axial-line scanning speed of 400 Hz and an average phase change over eight sequential scans is as low as 10 microm/s, while a spatial resolution of 10 microm is maintained. Using this technique, we present what are to our knowledge the first phase-resolved OCT/ODT images of blood flow in human skin.  相似文献   

13.
A new magnetic resonance imaging technique was applied to the Taylor-Couette and spiral Poiseuille (Taylor-Couette with superposed mean axial flux) flows for the first time. The experimental technique is a combination of spatial tagging methods and a snapshot FLASH imaging sequence, which allows the full-field visualization of 2-D slices of the flow field, with image acquisition times approximately half a second. By acquiring images every few seconds, direct visualization of flow patterns can be obtained in the form of cinematography. Tagged images of the Taylor-Couette flow were acquired in both the axial and transverse planes and confirmed previously reported numerical predictions of Taylor cell size. Tagged images of the spiral Poiseuille flows verified that the cells in this flow propagate at a higher velocity than the mean axial flow. In addition, intermittent cell formation was observed as the axial flow was increased.  相似文献   

14.
To assess the ability of projective phase sensitive magnetic resonance (MR) angiography to visualize the aortoiliac vascular segment, and to determine the effects of triggering and timing of data acquisition om image quality, we studied 18 healthy volunteers, mean age 33.3 +/- 11 years, by color Doppler imaging and by MR angiography. MR angiography was performed at 1.5 T using a flow-adjustable gradient-echo (FLAG) sequence operated in both ECG-triggered and non-triggered acquisition modes. The images were graded in a blinded fashion by two independent observers. The data were analyzed using Pearson's chi-square analysis. Eighteen triggered time-resolved and 17 non-triggered, time-averaged MR angiograms consisting of 252 and 17 angiographic images, (AI) respectively, were analyzed. In the triggered mode 69 (27.4%) AI and in the non-triggered mode 2 (11.8%) AI were diagnostic. At least one triggered diagnostic AI was obtained in each subject. The image grades were not statistically different between observers (kappa = 0.6686). In the triggered mode diagnostic images were acquired within +/- 90 msec of the peak systolic flow velocity determined by Doppler. The proportion of diagnostic images in the triggered mode was highest (73.3%) within a 30-msec interval before the peak flow. In healthy subjects the aortoiliac segment is reliably visualized by FLAG MR angiography. The optimum results are achieved using the triggered acquisition mode and timing acquisition to the initial 180 msec of the abdominal aortic systolic flow pulse.  相似文献   

15.
Magnetic resonance imaging (MRI) suffers from artifacts caused by concomitant gradients when the product of the magnetic field gradient and the dimension of the sample becomes comparable to the static magnetic field. To investigate and correct for these artifacts at very low magnetic fields, we have acquired MR images of a 165-mm phantom in a 66-microT field using gradients up to 350 microT/m. We prepolarize the protons in a field of about 100 mT, apply a spin-echo pulse sequence, and detect the precessing spins using a superconducting gradiometer coupled to a superconducting quantum interference device (SQUID). Distortion and blurring are readily apparent at the edges of the images; by comparing the experimental images to computer simulations, we show that concomitant gradients cause these artifacts. We develop a non-perturbative, post-acquisition phase correction algorithm that eliminates the effects of concomitant gradients in both the simulated and the experimental images. This algorithm assumes that the switching time of the phase-encoding gradient is long compared to the spin precession period. In a second technique, we demonstrate that raising the precession field during phase encoding can also eliminate blurring caused by concomitant phase-encoding gradients; this technique enables one to correct concomitant gradient artifacts even when the detector has a restricted bandwidth that sets an upper limit on the precession frequency. In particular, the combination of phase correction and precession field cycling should allow one to add MRI capabilities to existing 300-channel SQUID systems used to detect neuronal currents in the brain because frequency encoding could be performed within the 1-2 kHz bandwidth of the readout system.  相似文献   

16.
We obtained a magnetic resonance image of 1 microm resolution and 75 microm(3) voxel volume for a phantom filled with hydrocarbon oil within an hour at 14.1 T. For this work, a specially designed probe with a high sensitivity RF coil and gradient coils generating over 1000 G/cm was built. The optimal pulse sequence was analyzed in consideration of the bandwidth, diffusion coefficients, and T(1) and T(2) relaxations of the medium. The system was applied to the in vivo imaging of a geranium leaf stem to get the images of 2 microm resolution and 200 microm(3) voxel volume.  相似文献   

17.
A new pulse sequence for high-resolution T2-weighted (T2-w) imaging is proposed — image domain propeller fast spin echo (iProp-FSE). Similar to the T2-w PROPELLER sequence, iProp-FSE acquires data in a segmented fashion, as blades that are acquired in multiple TRs. However, the iProp-FSE blades are formed in the image domain instead of in the k-space domain. Each iProp-FSE blade resembles a single-shot fast spin echo (SSFSE) sequence with a very narrow phase-encoding field of view (FOV), after which N rotated blade replicas yield the final full circular FOV. Our method of combining the image domain blade data to a full FOV image is detailed, and optimal choices of phase-encoding FOVs and receiver bandwidths were evaluated on phantom and volunteers. The results suggest that a phase FOV of 15–20%, a receiver bandwidth of ± 32–63 kHz and a subsequent readout time of about 300 ms provide a good tradeoff between signal-to-noise ratio (SNR) efficiency and T2 blurring. Comparisons between iProp-FSE, Cartesian FSE and PROPELLER were made on single-slice axial brain data, showing similar T2-w tissue contrast and SNR with great anatomical conspicuity at similar scan times — without colored noise or streaks from motion. A new slice interleaving order is also proposed to improve the multislice capabilities of iProp-FSE.  相似文献   

18.
Ultra-fast magnetic resonance imaging techniques are used to image liquid distribution in two and three dimensions during air-water co-current down flow through a fixed bed of cylindrical porous pellets of length and diameter 3 mm, packed within a 43 mm internal diameter column in both the trickle- and pulsing-flow regimes. The data acquisition times used were 20 and 280 ms, giving 2-D and 3-D spatial resolutions of 1.4 mm x 2.8 mm and 3.75 mm x 3.75 mm x 1.87 mm, respectively. This work reports images of local pulsing events within the bed occurring during the trickle-to-pulse flow transition. The evolution of the local instabilities is studied as a function of increasing liquid velocity at constant gas velocity.  相似文献   

19.
20.
A real-time video encoded particle imaging tracking technique (VPIT) for velocity measurement has been developed. It can currently capture images of a seeded particle flow field at up to a video rate of 25 pictures per second. The method as shown in this paper is suitable for measuring a slow sparsely seeded flow. A VPIT image presents a triplet image pattern. The image has been encoded into a single video frame with the time history of three events. This is achieved by synchronising the video (CCIR) signal from a CCD (charge coupled device) camera, operating in frame integration mode with a suitable light source. The principle of VPIT demonstrates how the direction and the magnitude of the velocity can be recorded for a sequence or track of particles. The VPIT triplet images resolve several common difficulties associated with the application of PIV. Firstly, the time history of the laser pulse can be ‘labeled’ on an individual particle image. Secondly, there is no velocity direction ambiguity in the VPIT image. Thirdly, it is possible to extract the acceleration of the particle from a single VPIT frame. Finally, for a sequence of captured frames, the problems of particle path tracking are simplified, because each VPIT image has a video encoded time sequence ‘labelled’ on it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号