首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
采用传统陶瓷工艺制备了BiVO4掺杂的CaO-Li2O-Sm2O3-TiO2(CLST)介质陶瓷,用X-射线衍射仪、扫描电镜及电感-电容-电阻测试仪等对其烧结特性、相结构及介电性能进行了系统研究.结果表明,BiVO4掺杂能显著降低CLST陶瓷的烧结温度,由1 300 ℃降至1 200 ℃.BiVO4掺杂量为1%,烧结温度为1 200 ℃时,CLST陶瓷具有较好的综合介电性能:εr=88,tan δ=0.018,τ f =-30×10-6/℃.  相似文献   

2.
采用固相反应法,研究了MoO3掺杂对BiNbO4陶瓷微结构、烧结特性和微波介电性能的影响。对相对介电常数εr和品质因数Q随烧结温度的变化以及谐振频率温度系数随MoO3掺杂量的变化也进行了研究。MoO3的掺杂量x低于0.05时,实现了BiNbO4陶瓷在970℃以下的低温烧结,并且相转变温度也降低了约60℃。通过对εr以及介质损耗随温度的变化特性的研究,证实了缺陷偶极子对材料介电性能的影响。  相似文献   

3.
研究了钙硼硅(CBS)微晶玻璃掺杂BaTiO3(BT)-Nb2O5-ZnO系统的微结构和介电性能,并用掺杂后晶粒壳与晶粒芯体积分数的变化规律分析了其改性机理。对比SEM照片得出,不同含量CBS掺杂BT的室温εr与掺杂后BT陶瓷的晶粒生长情况以及玻璃相的多少和分布密切相关。经优化配方和工艺后,在空气中于1150℃烧成的BaTiO3陶瓷材料的主要性能指标达到:εr25℃>1350,tgδ≤1.0×10-2,ρ≥1011?·cm,最大电容量变化率不超过±10%(-55~+150℃),适于制备中温烧结X8R多层陶瓷电容器。  相似文献   

4.
采用传统固相反应法,制备了钨青铜结构BaO·Nd2O3·4TiO2(BNT)陶瓷,并添加质量分数为1%~6%的MgO·Li2O·SiO2(MgLiSi)玻璃。对其显微结构和介电性能进行了研究。结果表明:在BNT陶瓷中添加适量的MgLiSi玻璃,可以使BNT陶瓷的烧结温度从1250℃以上降低到1150℃,并提高其介电性能。当添加质量分数为4%的MgLiSi玻璃时,BNT陶瓷可获得最佳的介电性能:εr=95,tanδ=5×10–4,击穿场强为16.7×103V/mm。  相似文献   

5.
研究了Sm2O3掺杂的Bi2O3-ZnO-Nb2O5(BZN)基陶瓷(Bi1.5–SmxZn0.5)(Zn0.5Nb1.5)O7(0≤x≤1.5,BSZN)的结构x和介电性能。实验采用传统的固相反应法制备陶瓷样品,XRD分析样品的相结构。结果表明:未掺杂的BZN陶瓷其结构为立方焦绿石单相;当Sm2O3掺杂量较少(0相似文献   

6.
采用XRD及SEM研究(Ca0.61Nd0.26)TiO3对微波介质陶瓷Ba4Sm9.33Ti18O54的结构和微波介电性能的影响。获得了一些性能较好的微波介质陶瓷(1–x)Ba4Sm9.33Ti18O54-x(Ca0.61Nd0.26)TiO3,其微波介电性能如下:εr=75,Q·f为8985GHz,τf为–8.2×10–6℃–1(x?=0);εr为75,Q·f为9552GHz,τf为–14.4×10–6℃–1(x?=0.2)。  相似文献   

7.
采用传统固相反应法制备样品,研究了SiO2掺杂对BiNbO4烧结特性、微观结构、介电性能的影响。利用HP8753E网络分析仪测试样品微波性能。实验结果表明,Si取代后样品逐渐出现了三斜相,随着Si取代量的增加,BiNbO4陶瓷的烧结温度升高,晶粒变大、形状变不规则、样品Q值减小、谐振频率温度系数由正值向负值转变。  相似文献   

8.
铌钴镧掺杂对BaTiO3陶瓷结构与介电性能的影响   总被引:4,自引:1,他引:3  
根据超薄介质层对高介电常数和细晶结构介质陶瓷材料的需要,采用非均匀形核淀积方法实现Nb、Co、La的氧化物与BaTiO3(BT)水热粉体在纳米水平上的均匀混合。研究了该方法制备的Nb、Co、La掺杂BT陶瓷的相结构、显微结构以及介电性能。实验发现,La、Nb、Co的掺杂可获得致密细晶BT陶瓷,晶粒尺寸可控制在300nm范围内,室温相对介电常数达到3400,介温稳定性符合X7R要求。  相似文献   

9.
采用sol-gel方法制备SrTiO3陶瓷粉体,利用TG-DTA分析SrTiO3干凝胶粉的分解、化合反应,初步确定了SrTiO3陶瓷预烧和烧结温度,采用SEM研究了SrTiO3陶瓷的内部结构,重点探讨了不同烧结制度对SrTiO3陶瓷介电性能的影响。研究表明,当采用在空气气氛下以5℃/min的升温速率直接升温至1000℃,保温0.5h,再降温至750℃保温0.5h后随炉冷却的烧结工艺,SrTiO3陶瓷纯度高,致密性好,晶粒粒径小于100nm,且具有良好的介电性能,低频下相对介电常数高达3000左右。  相似文献   

10.
采用传统固相烧结工艺制备了BaO-La2O3-nTiO2(n为3,4,5和6)微波介质陶瓷,研究了该系陶瓷的相组成、微观形貌和微波介电性能之间的关系。结果表明:该系陶瓷具有较优介电性能的主晶相为斜方晶系BaLa2Ti4O12,并且第二相的存在对其介电性能影响明显。烧结体致密性是Q·f及τf的重要影响因素。当n为4时,获得相对较优的介电性能:εr为139.7,Q·f为1239.0GHz和τf达180.0×10–6℃–1。  相似文献   

11.
采用传统电子陶瓷工艺合成了MnCO3掺杂的Ba(Mg1/3Ta2/3)O3(BMT)微波介质陶瓷,并研究了MnCO3掺杂量对陶瓷微波介电性能的影响.实验结果发现,添加少量的MnCO3能改善BMT陶瓷的烧结性能,当w(MnCO3)=2%时,陶瓷致密化烧结温度由纯相时的1 650℃以上降至1 350℃,且表观密度提高到7.482 g/cm3以上,烧结体密度可达理论密度的98%,材料的微波性能达到最佳值:介电常数εr=25.09,品质因数与频率之积Q·f=99 000 GHz(8 GHz),谐振频率温度系数τf=0.5×10-6/℃.  相似文献   

12.
研究了BaBi10B6O25掺杂量对CaZrO3陶瓷烧结性能、物相组成、介电性能和微观组织形貌的影响。结果表明,通过掺杂BaBi10B6O25,可使CaZrO3陶瓷的烧结温度由1 500℃降至1 000℃,且无第二相生成,相对密度达98%。当w(BaBi10B6O25)=7.5%时,CaZrO3陶瓷在1 000℃烧结3h获得良好的介电性能:介电常数εr=28,品质因数与频率之积Q·f=8 872GHz,频率温度系数τf=21×10-6/℃。  相似文献   

13.
采用碳酸锶、氧化铋、二氧化钛、碳酸钠为原料,制备了SrTiO3系介质陶瓷。研究了BNT(钛酸铋钠)加入量对SrTiO3系陶瓷的εr、tgδ的影响,以及εr和tgδ随温度的变化。结果发现,室温下SrTiO3系陶瓷的εr随着BNT加入量的增加而逐渐提高,达到一定峰值后又逐渐下降,其最高可以达到4 300。  相似文献   

14.
应用溶胶-凝胶(Sol-Gel)法与自燃烧结合的方法制备了CaO-Li2O-Sm2O3-TiO2(CLST)陶瓷纳米粉体.该文讨论了Sol-Gel法与自燃烧法结合制备CLST纳米粉体的新方法.对V2O5掺杂的低温烧结CLST陶瓷从烧结性质、结构与相组成、显微形貌、介电性质等方面进行了研究.结果表明,V2O5掺杂能显著降低CLST陶瓷的烧结温度,由1 300 ℃降至1 100 ℃.掺杂质量比为0.25%的V2O5 的CLST陶瓷取得了较好的介电性能.介电常数εr=86,介电损耗tan δ=0.011,频率温度系数τf=10×10-6 /℃.  相似文献   

15.
前列腺素E1相关性白细胞减少伴血小板减低1例   总被引:1,自引:0,他引:1  
研究了B2O3对陶瓷的烧结性能及微波介电特性的影响.研究表明,B2O3的掺入能有效降低Ca[(Li1/3Nb2/3)0.92Zr0.08]O3-δ(CLNZ)陶瓷体系的烧结温度150~200 ℃,谐振频率温度系数τf随B2O3掺入量增加及烧结温度的提高,由负值向正值方向增大.在1 000 ℃,掺入质量分数w(B2O3)=2.5%,陶瓷微波介电性能最佳:介电常数εr=31.3,品质因数与频率之积Qf=13 680 GHz,τf =-8.7 μ℃-1.  相似文献   

16.
在不同条件下采用固相反应法合成BaCu(B2O5)(BCB)粉体,研究了所合成的BCB粉体对Ba5Nb4O15-BaWO4(BNBW)陶瓷的微波介电性能的影响。结果表明,采用无水乙醇作为球磨介质,在800℃煅烧可以得到无杂相的BCB。将BCB作为助烧剂,添加少量于BNBW陶瓷中,在950℃烧结时可有效促进陶瓷致密化。随着BCB的掺量增加,BNBW陶瓷的介电常数εr和谐振频率温度系数τf单调降低,而品质因数与频率之积Q×f值先上升后下降。当w(BCB)=1%时,BNBW陶瓷得到较好微波性能:εr=19.0,Q×f=33 802GHz,τf=2.5×10-6/℃。  相似文献   

17.
采用固相反应法制备Mg取代Ca的CaO-Li2O-Sm2O3-TiO2(CLST)陶瓷,用XRD图谱研究其晶体结构。结果表明:Mg取代Ca的量x为1~8时,在1250℃烧成,形成单一的钙钛矿相。随着x增大,晶格常数都逐渐减小;x为16时,晶格常数突变,形成富Sm非钙钛矿的主晶相。在1MHz下,εr和tgδ都随x增大而降低,x为12时,εr为42.6,tgδ为0.0012。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号