首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Poly(alkyl aryl ether) dendrimers of up to four generations composed of a phloroglucinol core, branching components, and pentamethylene spacers are synthesized by a divergent growth methodology. A repetitive synthetic sequence of phenolic O-alkylation and O-benzyl deprotection reactions are adopted for the synthesis of these dendrimers. The peripheries of the dendrimers contain 6, 12, 24, and 48 phenolic hydroxyl groups, either in the protected or unprotected form, for the first, second, third, and fourth generations, respectively. Because of the presence of hydrophilic exterior and relatively hydrophobic interior regions, alkaline aqueous solutions of these dendrimers are able to solubilize an otherwise insoluble pyrene molecule and these supramolecular complexes precipitate upon neutralization of the aqueous solutions.  相似文献   

2.
Dendritic microenvironments defined by dynamic internal cavities of a dendrimer were probed through geometric isomerization of stilbene and azobenzene. A third-generation poly(alkyl aryl ether) dendrimer with hydrophilic exterior and hydrophobic interior was used as a reaction cavity in aqueous medium. The dynamic inner cavity sizes were varied by utilizing alkyl linkers that connect the branch junctures from ethyl to n-pentyl moiety (C(2)G3-C(5)G3). Dendrimers constituted with n-pentyl linker were found to afford higher solubilities of stilbene and azobenzene. Direct irradiation of trans-stilbene showed that C(5)G3 and C(4)G3 dendrimers afforded considerable phenanthrene formation, in addition to cis-stilbene, whereas C(3)G3 and C(2)G3 gave only cis-stilbene. An electron-transfer sensitized trans-cis isomerization, using cresyl violet perchlorate as the sensitizer, also led to similar results. Thermal isomerization of cis-azobenzene to trans-azobenzene within dendritic microenvironments revealed that the activation energy of the cis- to trans-isomer was increasing in the series C(5)G3 < C(4)G3 相似文献   

3.
Jayaraj Nithyanandhan 《Tetrahedron》2005,61(47):11184-11191
Poly(alkyl aryl ether) dendrimers were utilized to synthesize a series of new triphenylphosphine functionalized dendrimers. Zero, first, second and third generation dendrimers, carrying 3, 6, 12 and 24 triphenylphosphine units, were prepared and characterized. The new triphenylphosphine containing dendrimers were assessed for their reactivity profiles and in this instance, the dendrimers were used as reagents to mediate Mitsunobu etherification reaction between phenol and various primary, secondary and benzylic alcohols. In addition, dendritic poly-phenols were also tested in an O-benzylation reaction. A monomeric methoxy group attached triphenylphosphine acted as a control for comparison of reactivity profiles of dendrimers. It was observed that the etherification reaction was mediated efficiently by the dendritic reagent, and in addition, the dendritic phosphine oxide reagents could be recovered quantitatively by precipitation methods. The recovered dendritic phosphine oxides were reduced subsequently to the corresponding phosphines and used as reagents for the Mitsunobu reaction, repetitively.  相似文献   

4.
Poly(alkyl aryl ether) dendrimers were functionalized with bromophenyl groups at their peripheries, so as to have 3, 6, 12, and 24 groups in the zero, first, second, and third generation dendrimers, respectively. The new bromophenyl functionalized dendrimers were assessed for their reactivities in C-heteroatom and C-C bond forming reactions. For this purpose, the bromophenyl functionalized dendrimers were converted quantitatively to their polylithiated derivatives, using n-BuLi in benzene. The polylithiated dendrimers were reacted either with D2O or with CO2, so as to afford the corresponding deuterated and carboxylic acid functionalized dendrimers, respectively. The carboxylic acid functionalized dendrimers were modified further to the methyl esters during their characterization.  相似文献   

5.
A series of azobenzene-functionalized poly(alkyl aryl ether) dendrimers have been synthesized and their photochemical and photophysical properties in solution and as thin films have been investigated. Although the photochemical behavior of the azodendrimers in solution indicated that the azobenzene units behave independently, very similar to the constituent monomer azobenzene unit, the properties of thin solid films of the dendrimers were distinctly different. The azodendrimers, AzoG1, AzoG2, and AzoG3 were observed to form stable supercooled glasses, which showed long-wavelength absorption and red emission characteristics of J-aggregates of the azobenzene chromophores. Reversible photoinduced isomerization of the azodendrimers in the glassy state is described.  相似文献   

6.
In order to study the efficiencies of catalytic moieties within and across dendrimer generations, partially and fully functionalized dendrimers were synthesized. Poly(alkyl aryl ether) dendrimers from zero to three generations, presenting 3 to 24 peripheral functionalities, were utilized to prepare as many as 12 catalysts. The dendrimer peripheries were partially and fully functionalized with triphenylphosphine in the first instance. A rhodium(I) metal complexation was performed subsequently to afford multivalent dendritic catalysts, both within and across generations. Upon synthesis, the dendritic catalysts were tested in the hydrogenation of styrene, in a substrate-to-catalyst ratio of 1:0.001. Turn-over-numbers were evaluated for each catalyst, from which significant increases in the catalytic activities were identified for multivalent catalysts than monovalent catalysts, both within and across generations.  相似文献   

7.
The synthesis, structural characterisation and properties of a number of phthalocyanine-containing dendrimers are described. Peripheral substitution of phthalocyanine (Pc) with four poly(aryl ether) dendritic wedges (1st, 2nd or 3rd generation) produces materials whose properties are dominated both by the columnar self-association of the Pc core and by the glass-forming character of the dendritic substituents. Asymmetric Pcs containing a single poly(aryl ether) dendron display a columnar mesophase, the structure of which can be frozen into an anisotropic glass at room temperature. Placing the dendritic wedges at the axial sites of silicon phthalocyanine prohibits self-association and gives materials from which can be fabricated robust, isotropic solid solutions of Pc with high glass transition temperatures. A single crystal X-ray diffraction analysis of one of these compounds illustrates the ability of the axial dendrons to prevent cofacial aggregation in the solid state.  相似文献   

8.
A new family of polyanionic poly(alkyl aryl-ether) metallodendrimers decorated with four and eight cobaltabisdicarbollide units have been obtained in high yield by the ring-opening reaction of cyclic oxonium [3,3'-Co(8-(C(2)H(4)O)(2)-1,2-C(2)B(9)H(10))(1',2'-C(2)B(9)H(11))] with alkoxides formed by deprotonation of terminal alcohols in the α,α'-bis[3,5-bis(hydroxymehyl)phenoxy]-p-xylene, α,α'-bis[3,5-bis(hydroxymehyl)phenoxy]-m-xylene, α,α'-bis[3,5-bis-[3,5-bis(hydroxymethyl)phenoxy]methylen]phenoxy]-p-xylene, and α,α,'-bis[3,5-bis-[3,5-bis(hydroxymethyl)phenoxy]methylen]phenoxy]-m-xylene dendrimers. The crystal structure of the precursor α,α'-bis[3,5-bis(chloromethyl)phenoxy]-p-xylene is also described. Final products are fully characterized by FTIR, NMR, UV-vis spectroscopies and elemental analysis. For metallodendrimers, the UV-vis absorptions have been a good tool for estimating the experimental number of cobaltabisdicarbollide units peripherally attached to the dendrimeric structure and consequently to corroborate the complete functionalization of the dendrimers.  相似文献   

9.
Poly(aryl ether) dendrons (2) bearing long alkyl chains can undergo physical gelation in various organic solvents, especially alkanes and alcoholic solvents. In contrast, 3,4,5-trialkoxyphenyl derivatives (1), which are the building blocks of the dendrons (2), do not exhibit any gelation properties; thus, revealing the key role of the dendron structure in the aggregation/gelation process. Hansen solubility parameters allow us to gain a detailed understanding of the role of solvent in gelation. Critical gel concentrations, FT-IR spectroscopy, NMR spectroscopy, T gel measurements, and scanning electron microscopy are used to characterize the gel structures.  相似文献   

10.
A series of benzophenone (BP) and naphthalene (NA) labeled poly(aryl ether) dendrimers (BP-Gn-NA), generations 1-4, were synthesized, and their photophysical properties were examined. Flash photolysis demonstrates that the triplet energy in BP-Gn-NA can be transferred from the peripheral BP chromophores to the core NA group with the efficiencies of ca. 0.97, 0.96, 0.88, and 0.54 and with the rate constants of 1.4x10(8), 1.2x10(8), 9.5x10(7), and 1.3x10(7) s-1 at room temperature for generations 1-4, respectively. The transient absorption spectra of BP-Gn-NA show clearly the formation of the triplet NA absorption along with the decay of the triplet BP one with an isosbestic point at 475 nm, which gives direct evidence of the triplet energy transfer from the periphery BP chromphores to the core NA group. The phosphorescence of the NA group attached to the focal point was observed when the periphery BP chromophores were selectively irradiated in BP-G1-NA at 77 K. The triplet energy transfer occurs at 77 K with the efficiencies of 1.0, 0.16, 0.17, and 0.21 for generations 1-4, respectively. The intramolecular triplet energy transfer is proposed to proceed mainly via a through space mechanism.  相似文献   

11.
Four generations of poly(aryl ether) dendrimers containing aryl sulfide or aryl sulfone groups, and aryl fluoride terminal functionality, have been synthesized using the divergent initiator core method and bis(4-fluorophenyl) sulfone as the core precursor. The strategy is based on the divergent approach and an activation/condensation sequence that involves oxidation of the aryl sulfide group and the displacement of the activated halide moiety by a phenolate ion. The phenolate is easily generated in situ from an aryl carbonate. No reaction intermediates were detected when the condensation reaction was carried out utilizing a very active metal carbonate, such as cesium carbonate, in conjunction with magnesium hydroxide or calcium carbonate which removes some of the fluoride ions formed. The samples were characterized by HPLC, MALDI-TOF-MS, NMR, and SEC. Imperfections in some of the molecules of the dendrimers, formed by reaction of the core precusors with an impurity present in the phenol, were also identified by MALDI-TOF-MS. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1781–1798, 1997  相似文献   

12.
13.
Poly(aryl ether phthalazine)s were found to undergo an exothermic reaction at a temperature range of 360–440°C. We elucidated the origin of the exothermic reaction and the physiochemical phenomena associated with it, based on thermal analyses, model compound studies, and 13C solid-state NMR studies. At elevated temperatures, polymers containing a diphenylphthalazine moiety 4 underwent extensive thermal crosslinking reactions as a result of a nitrogen elimination reaction of the phthalazine moiety. However, polymers containing the tetraphenyl or hexaphenyl phthalazine moiety 5 and 6 were found to undergo principally a backbone rearrangement reaction, in which the phthalazine moiety rearranged to a quinazoline. Utilizing this efficient thermal rearrangement of polyphenylated phthalazines, we have prepared a novel activated difluoride, 2,4-bis(4-fluorophenyl)-,5,6,7,8-tetraphenylquinazoline 9d, which underwent high-temperature solution polycondensation with BPA to give the quinazoline containing poly(aryl ether) 14. Polymer 14 is amorphous, has a glass transition temperature of 264°C, and has high thermooxidative stability with 5% weight loss being recorded at 514°C in nitrogen. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
The synthesis of the 1st, 2nd and 3rd generation phthalocyanine-centred and naphthalocyanine-centred poly(aryl ether) dendrimers possessing oligo(ethyleneoxy) surface groups is described. These materials are soluble in polar protic solvents. For both types of macrocycle, the tendency of the non-polar phthalocyanine core towards intermolecular cofacial aggregation is not reduced by peripheral dendritic substitution. However, the prohibition of cofacial aggregation can be achieved by placing the dendritic substituents at the axial sites of the silicon-containing macrocycle. A single crystal X-ray diffraction analysis of one of these compounds beautifully illustrates this concept.  相似文献   

15.
Polymer miscibility was found for a blend system comprising of a new poly(aryl ether ketone) and a poly(ether imide). Phase homogeneity was preliminarily confirmed using optical and scanning electron microscopy, indicating that the scales of phase homogeneity in the blends were beyond the resolution limits of either microscopy. A composition-dependent, single glass transition temperature (Tg) in the PAEK/PEI blends within the full range of composition was observed using differential scanning calorimetry (DSC). The thermal transition breadth also suggests that the scales of mixing are fine and uniform.  相似文献   

16.
Poly(benzyl ether) dendrimers with o-, m-, and p-isomers of dialkoxybenzene at their focal points [o-, m-, and p-(Gn)2Ar], having generation numbers (n) of 0–3, were synthesized. 1H NMR pulse relaxation times (T1) of the exterior MeO groups of o- and m-(Gn)2Ar (n = 0–3) all remained in the range of 0.92–1.43 s. In sharp contrast, an exceptionally short T1 value (0.23 s) was observed for p-(G3)2Ar. Although their absorption spectral profiles were slightly different from one another, an essential difference was observed for their fluorescence properties. When the generation number was increased, the fluorescence efficiency of o-(Gn)2Ar increased, but that of p-(Gn)2Ar decreased, whereas m-(Gn)2Ar exhibited a relatively small change in the fluorescence efficiency. Fluorescence depolarization studies showed a highly efficient intramolecular energy migration in p-(G3)2Ar as compared with o-(G3)2Ar and m-(G3)2Ar. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3524–3530, 2003  相似文献   

17.
A series of benzophenone (BP) and norbornadiene (NBD)-labeled poly(aryl ether) dendrimers (Gn-NBD), generations 1-4, were synthesized, and their photophysical and photochemical properties were examined. The phosphorescence of the peripheral BP (donor) chromophore was efficiently quenched by the NBD (acceptor) group attached to the focal point. Time-resolved spectroscopic measurements indicated that the lifetime of the triplet state of the BP chromophore was shortened due to the proximity of the NBD group. Selective excitation of the BP chromophore resulted in isomerization of the NBD group to quadricyclane (QC). All of these observations suggest that an intramolecular triplet energy transfer occurs in Gn-NBD molecules. The light-harvesting ability of these molecules increases with generation due to an increase in the number of peripheral chromophores. The energy transfer efficiencies are ca. 0.97, 0.54, 0.45, and 0.37 for generations 1-4, respectively, and the rate constant of the triplet-triplet energy transfer is ca. 10(6)-10(7) s(-1), which decreases inconspicuously with increasing generation. The intramolecular triplet energy transfer is proposed to proceed mainly via a through-space mechanism involving the closest donor (folding back conformation) and acceptor groups.  相似文献   

18.
We study the complexation of nontoxic, native poly(propyl ether imine) dendrimers with single-walled carbon nanotubes (SWNTs). The interaction was monitored by measuring the quenching of inherent fluorescence of the dendrimer. The dendrimer-nanotube binding also resulted in the increased electrical resistance of the hole doped SWNT, due to charge-transfer interaction between dendrimer and nanotube. This charge-transfer interaction was further corroborated by observing a shift in frequency of the tangential Raman modes of SWNT. We also report the effect of acidic and neutral pH conditions on the binding affinities. Experimental studies were supplemented by all atom molecular dynamics simulations to provide a microscopic picture of the dendrimer-nanotube complex. The complexation was achieved through charge transfer and hydrophobic interactions, aided by multitude of oxygen, nitrogen, and n-propyl moieties of the dendrimer.  相似文献   

19.
Hydroxyl group terminated poly(propyl ether imine) dendrimers of 1 to 5 generations absorb in the region of 260-340 nm, in MeOH and aqueous solutions. Excitation of a solution of the dendrimers at 330 nm led to an emission at approximately 390 nm. The emission intensities increased under acidic pH and in more viscous solvents. The presence of air did not affect the emission profiles, as also aging of a dendrimer solution for prolonged periods. Lifetime measurements show at least two species responsible for the emission. Anions perchlorate, periodate, nitrite, and pyridinium methyliodide quenched the fluorescence efficiently, among several anions tested.  相似文献   

20.
A series of novel poly(aryl ether sulfone)s (PAESs) were prepared from bis(4-chlorophenyl) sulfone and various bisphenol monomers via nucleophilic aromatic substitution polycondensation. The polycondensation proceeded quantitatively in N,N-dimethylacetamide and afforded PAESs with inherent viscosities of 0.62–0.81 dL/g. The obtained PAESs showed high-glass transition temperatures beyond 177°C and excellent thermal stability with 10% weight loss temperatures in the range of 541–571°C. The PAESs 2a–c could dissolve readily in common organic solvents and their solubility was improved by the introduction of bulky pendant groups. The PAESs formed transparent, strong and flexible films, with tensile strengths of 88.1–98.7 MPa, Young modulus of 3.14–3.52 GPa, and elongation at break of 18–34%. Furthermore, the resulting PAES films showed low dielectric constants (2.77–3.02 at 1 MHz) and low water absorption (0.51–0.83%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号