首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 996 毫秒
1.
As demonstrated by means of the one-dimensional solid-state MAS exchange experiment (CODEX), the rate of the proton driven spin diffusion between backbone (15)N nuclei in totally enriched protein depends strongly on the magic angle spinning (MAS) frequency: spin diffusion at MAS frequency 16 kHz is about 4-5 times slower as compared to that at MAS frequency 1 kHz which is due to the averaging of the homo- and hetero-nuclear dipolar interactions by MAS. It is important that even at the highest MAS frequencies used in our experiments the spin diffusion rate is comparable or larger than typical values of the spin-lattice relaxation rates of backbone nitrogens in solid proteins. Thus, the precise quantitative analysis of (15)N T(1)'s in totally enriched solid proteins may lead to wrong quantitative results. On the other hand, the effectiveness of the (15)N-(15)N correlation and structure determination experiments making use of (15)N-(15)N distances can be increased by decreasing the MAS frequency as far as possible, which is counter intuitive to the commonly applied fast MAS conditions in order to reduce the dipolar-broadened line widths for increased spectral resolution.  相似文献   

2.
Proton NMR longitudinal and transverse relaxation rates of unlabelled proteins are generally dominated by the many 1H-1H dipolar interactions so that spin diffusion, rather than molecular or internal motions, governs longitudinal relaxation. Here, relaxation measurements of backbone amide proton (1H(N)) magnetisations have been carried out employing the 99% 2H, 98% 15N labelled, small 2F2 protein domain in 10%/90% H(2)O/D(2)O solution. Under these conditions, the longitudinal relaxation rates exhibit time constants, T(1)*=1/R(1)* if described by a mono-exponential, within the range of 3.0 to 18.7s-a wide range which indicates that the phenomenon of spin diffusion has been greatly reduced. The majority of 1H(N) nuclei in this sample (pH 4.0 and 5 degrees C) exhibit chemical exchange with solvent that couples their longitudinal relaxation to that of the solvent. For the subset of 1H(N) nuclei not undergoing detectable solvent chemical exchange, the R(1)* rates correlate well with their individual 1H(N,O)/2H(N,O) structural environments. The correlation for corresponding transverse relaxation rates, R(2)* was found to be less good. Longitudinal relaxation measurements in 1%/99% H(2)O/D(2)O solution identify a further subset of 1H(N) nuclei which exhibit essentially indistinguishable R(1)* rates in both 1% and 10% H(2)O, implying that averaging of rates from spin diffusion processes and different 2F2 isotopomer populations are negligible for these 1H(N) sites. In addition to a high sensitivity to structural parameters, model calculations predict 1H(N) relaxation rates to exhibit pronounced sensitivity to internal dynamics.  相似文献   

3.
Based on the measurement of cross-correlation rates between (15)N CSA and (15)N-(1)H dipole-dipole relaxation we propose a procedure for separating exchange contributions to transverse relaxation rates (R(2) = 1/T(2)) from effects caused by anisotropic rotational diffusion of the protein molecule. This approach determines the influence of anisotropy and chemical exchange processes independently and therefore circumvents difficulties associated with the currently standard use of T(1)/T(2) ratios to determine the rotational diffusion tensor. We find from computer simulations that, in the presence of even small amounts of internal flexibility, fitting T(1)/T(2) ratios tends to underestimate the anisotropy of overall tumbling. An additional problem exists when the N-H bond vector directions are not distributed homogeneously over the surface of a unit sphere, such as in helix bundles or beta-sheets. Such a case was found in segment 4 of the gelation factor (ABP 120), an F-actin cross-linking protein, in which the diffusion tensor cannot be calculated from T(1)/T(2) ratios. The (15)N CSA tensor of the residues for this beta-sheet protein was found to vary even within secondary structure elements. The use of a common value for the whole protein molecule therefore might be an oversimplification. Using our approach it is immediately apparent that no exchange broadening exists for segment 4 although strongly reduced T(2) relaxation times for several residues could be mistaken as indications for exchange processes.  相似文献   

4.
Protein backbone 15N NMR spin relaxation rates are useful in characterizing the protein dynamics and structures. To observe the protein nuclear-spin resonances a pulse sequence has to include a water suppression scheme. There are two commonly employed methods, saturating or dephasing the water spins with pulse field gradients and keeping them unperturbed with flip-back pulses. Here different water suppression methods were incorporated into pulse sequences to measure 15N longitudinal T1 and transversal rotating-frame T1ρ spin relaxation. Unexpectedly the 15N T1 relaxation time constants varied significantly with the choice of water suppression method. For a 25-kDa Escherichiacoli. glutamine binding protein (GlnBP) the T1 values acquired with the pulse sequence containing a water dephasing gradient are on average 20% longer than the ones obtained using a pulse sequence containing the water flip-back pulse. In contrast the two T1ρ data sets are correlated without an apparent offset. The average T1 difference was reduced to 12% when the experimental recycle delay was doubled, while the average T1 values from the flip-back measurements were nearly unchanged. Analysis of spectral signal to noise ratios (s/n) showed the apparent slower 15N relaxation obtained with the water dephasing experiment originated from the differences in 1HN recovery for each relaxation time point. This in turn offset signal reduction from 15N relaxation decay. The artifact becomes noticeable when the measured 15N relaxation time constant is comparable to recycle delay, e.g., the 15N T1 of medium to large proteins. The 15N relaxation rates measured with either water suppression schemes yield reasonable fits to the structure. However, data from the saturated scheme results in significantly lower Model-Free order parameters (=0.81) than the non-saturated ones (=0.88), indicating such order parameters may be previously underestimated.  相似文献   

5.
The influence of the (15)N CSA on (15)N longitudinal relaxation is investigated for an amide group in solid proteins in powder form under MAS. This contribution is determined to be typically 20-33% of the overall longitudinal relaxation rate, at 11.74 and 16.45 T, respectively. The improved treatment is used to analyze the internal dynamics in the protein Crh, in the frame of a motional model of diffusion in a cone, using the explicit average sum approach. Significant variations with respect to the determined dynamics parameters are observed when properly accounting for the contribution of (15)N CSA fluctuations. In general, the fit of experimental data including CSA led to the determination of diffusion times (tau(w)) which are longer than when considering only an (15)N-(1)H dipolar relaxation mechanism. CSA-Dipole cross-correlation is shown to play little or no role in protonated solids, in direct contrast to the liquid state case.  相似文献   

6.
One- (1-D) and two-dimensional (2-D) carbon-13 NMR exchange measurements in powder samples of isotopically normal durene under magic angle spinning (MAS) are reported. The experiments include rotor synchronized 2-D exchange (RS2DE), 1-D magnetization transfer (MT) and time reverse ODESSA (tr-ODESSA). The latter two experiments were performed as a function of several external parameters, including proton decoupling field during mixing time, sample spinning rate and partly, of temperature. The effects of these parameters on the spin exchange induced by spin diffusion and by chemical, or physical exchange, is discussed. Spin exchange between all types of carbons in the durene molecules occurs on the time scale of seconds. From the dependence of the spin exchange rate on the external parameters it is concluded that the process is dominated by spin diffusion. On the basis of these results an upper limit of 10(-16) cm2 s(-1) can be set for the self-diffusion constant in crystalline durene.  相似文献   

7.
Propagation of errors in a multispin system, from the experimental peak volumes into magnetization-exchange (cross relaxation or chemical exchange) rates, was calculated analytically. An explicit expression was derived for the error propagator. The error for each magnetization-exchange rate constant has a minimum, with the position dependent on the structure of the exchange network. Error analysis allows optimization of the mixing time for arbitrarily complex exchange systems. In cross-relaxation spectroscopy, the error analysis provides the upper and the lower boundaries of calculated interproton distances for all spin pairs. These limits differ throughout the molecule for the same distance. The differences are a consequence of the spin diffusion, which the present analysis fully takes into account.  相似文献   

8.
We present a novel approach to the investigation of rapid (>2s(-1)) NH exchange rates in proteins, based on residue-specific diffusion measurements. (1)H, (15)N-DOSY-HSQC spectra are recorded in order to observe resolved amide proton signals for most residues of the protein. Human ubiquitin was used to demonstrate the proposed method. Exchange rates are derived directly from the decay data of the diffusion experiment by applying a model deduced from the assumption of a two-site exchange with water and the "pure" diffusion coefficients of water and protein. The "pure" diffusion coefficient of the protein is determined in an experiment with selective excitation of the amide protons in order to suppress the influence of magnetization transfer from water to amide protons on the decay data. For rapidly exchanging residues a comparison of our results with the exchange rates obtained in a MEXICO experiment showed good agreement. Molecular dynamics (MD) and quantum mechanical calculations were performed to find molecular parameters correlating with the exchangeability of the NH protons. The RMS fluctuations of the amide protons, obtained from the MD simulations, together with the NH coupling constants provide a bilinear model which shows a good correlation with the experimental NH exchange rates.  相似文献   

9.
Almost 30 years ago, the stable isotope (15)N had covered a wide field of application in science and technology. With the preparation of the first smaller amounts of (15)N in 1958, an intensive work of research and development started for the production, analysis, and application of (15)N in the GDR. In this publication, activities of research and development for (15)N production using the principle of chemical exchange in the system NO( x )/HNO(3) from a laboratory scale to the introduction into chemical industry are described and new projects reported.  相似文献   

10.
NMR characterization of natural abundance (15)N in phosphorus-nitrogen compounds can be performed through (31)P using inverse detection methods. When the (31)P-(15)N scalar coupling is small, its observation is greatly disturbed by the residual signal coming from the 99.6% abundant (14)N isotopomer that usually is not completely suppressed by the phase cycle of the sequence. The combined use of pulsed field gradients to suppress this residual signal and the enhanced sensitivity (31)P, (15)N[(1)H]-esHSQC experiment affords artifact-free spectra with good signal-to-noise ratio, which allows the accurate measurement of (15)N NMR parameters such as chemical shifts and coupling constants with the benefits of phosphorus detection.  相似文献   

11.
A simple method is presented to accurately determine (15)N-[(1)H] NOEs in biomolecules in the presence of H(N)-water proton chemical exchange. Three measurements are required: one with nonselective proton saturation and two with different water saturation conditions to determine the equilibrium value of the (15)N signal. This approach is exemplified with data on two peptides, one helix-forming 17-mer and one compactly folded 56-mer. Results indicate that (15)N-[(1)H] NOEs determined using the standard approach with short recycle times (3 to 4 s) can be significantly in error when H(N)-water proton chemical exchange is relatively rapid, water proton relaxation is relatively slow, and (15)N-[(1)H] NOEs are away from the value of -1. This new method avoids such inaccuracies resulting from the use of short recycle times.  相似文献   

12.
The experimental parameters critical for the implementation of multidimensional solid-state NMR experiments that incorporate heteronuclear spin exchange at the magic angle are discussed. This family of experiments is exemplified by the three-dimensional experiment that correlates the (1)H chemical shift, (1)H-(15)N dipolar coupling, and (15)N chemical shift frequencies. The broadening effects of the homonuclear (1)H-(1)H dipolar couplings are suppressed using flip-flop (phase- and frequency-switched) Lee-Goldburg irradiations in both the (1)H chemical shift and the (1)H-(15)N dipolar coupling dimensions. The experiments are illustrated using the (1)H and (15)N chemical shift and dipolar couplings in a single crystal of (15)N-acetylleucine.  相似文献   

13.
The hydrogen bond of the type N-H...N in imidazole crystal has been studied by one and two-dimensional 15N exchange CP/MAS NMR measurements as well as the powder NMR spectrum. The chemical shift anisotropies for -N= and -N< were determined from the powder 1D spectrum. In 2D exchange CP/MAS NMR spectrum, the cross peaks between the 15N main resonance peaks for -N= and -N< were observed, implying that magnetization exchange between -N= and -N< takes place. The 1D exchange CP/MAS NMR measurements determined the exchange rate of magnetization at 289 K to be 1.3 and 1.5 s(-1) for -N= and -N<, respectively. The proton-driven spin-diffusion model interprets the experimental values, and the exchange rate depends strongly on the RF power of the proton decoupling field, suggesting that the magnetization transfer between -N= and -N< takes place by the 1H-driven spin-diffusion mechanism.  相似文献   

14.
Conformational or chemical exchange can cause significant sensitivity loss in NMR spectroscopy through resonance broadening for nuclear spins involved in these processes. While this effect may sometimes be alleviated by manipulating experimental conditions such as temperature, pH, and buffers, conditions optimal for all resonances are not always achievable. As a consequence, any means of recovering or minimizing this exchange-induced sensitivity loss is potentially of significant value in regaining information otherwise lost. We report the experimental observation of significant sensitivity gain for nuclear spins undergoing chemical exchange with solvent (water) at exchange rates ca 1-10 s(-1) in (1)H-(15)N correlation spectra of proteins acquired with band-selective pulses (the SOFAST-HMQC sequence).  相似文献   

15.
Magnetic and dynamics properties of paramagnetic centers in various trithiolium cations were characterized by static magnetic susceptibility measurements and EPR spectroscopy. Magnetically correlated units consisting of at least pairs of spins with ferromagnetic exchange coupling were found in some trithioles. The rates of intramolecular spin diffusion and intermolecular spin hopping were estimated separately. The rates and the anisotropy (v/v=20–300) of spin dynamics were shown to depend on the molecular structure.  相似文献   

16.
We analyze the evolution of magnetization following any series of radiofrequency pulses in strongly inhomogeneous fields, with particular attention to diffusion and relaxation effects. When the inhomogeneity of the static magnetic field approaches or exceeds the strength of the RF field, the magnetization has contributions from different coherence pathways. The diffusion or relaxation induced decay of the signal amplitude is in general nonexponential, even if the sample has single relaxation times T(1), T(2) and a single diffusion coefficient D. In addition, the shape of the echo depends on diffusion and relaxation. It is possible to separate contributions from different coherence pathways by phase cycling of the RF pulses. The general analysis is tested on stray field measurements using two different pulse sequences. We find excellent agreement between measurements and calculations. The inversion recovery sequence is used to study the relaxation effects. We demonstrate two different approaches of data analysis to extract the relaxation time T(1). Finite pulse width effects on the timing of the echo formation are also studied. Diffusion effects are analyzed using the Carr--Purcell--Meiboom--Gill sequence. In a stray field of a constant gradient g, we find that unrestricted diffusion leads to nonexponential signal decay versus echo number N, but within experimental error the diffusion attenuation is still only a function of g(2)Dt(3)(E)N, where t(E) is the echo spacing.  相似文献   

17.
Triple-resonance experiments capable of correlating directly bonded and proximate carbon and nitrogen backbone sites of uniformly 13C- and 15N-labeled peptides in stationary oriented samples are described. The pulse sequences integrate cross-polarization from 1H to 13C and from 13C to 15N with flip-flop (phase and frequency switched) Lee-Goldburg irradiation for both 13C homonuclear decoupling and 1H-15N spin exchange at the magic angle. Because heteronuclear decoupling is applied throughout, the three-dimensional pulse sequence yields 13C shift/1H-15N coupling/15N shift correlation spectra with single-line resonances in all three frequency dimensions. Not only do the three-dimensional spectra correlate 13C and 15N resonances, they are well resolved due to the three independent frequency dimensions, and they can provide up to four orientationally dependent frequencies as input for structure determination. These experiments have the potential to make sequential backbone resonance assignments in uniformly 13C- and 15N-labeled proteins.  相似文献   

18.
We present a computer program ROTDIF for efficient determination of a complete rotational diffusion tensor of a molecule from NMR relaxation data. The derivation of the rotational diffusion tensor in the case of a fully anisotropic model is based on a six-dimensional search, which could be very time consuming, particularly if a grid search in the Euler angle space is involved. Here, we use an efficient Levenberg-Marquardt algorithm combined with Monte Carlo generation of initial guesses. The result is a dramatic, up to 50-fold improvement in the computational efficiency over the previous approaches. This method is demonstrated on a computer-generated and real protein systems. We also address the issue of sensitivity of the diffusion tensor determination from (15)N relaxation measurements to experimental errors in the relaxation rates and discuss possible artifacts from applying higher-symmetry tensor model and how to recognize them.  相似文献   

19.
在自旋交换光泵过程中,多种参数可能会影响到最终可获得的超极化气体氙-129核自旋极化度.通过低场(0.002 T)核磁共振(NMR)系统研究了连续流动工作模式的自旋交换光泵过程,当混合工作气体流量为0.3 SLPM和0.5 SLPM时,实验测量得到最佳光泵泡工作温度;对于同位素富集和自然丰度的氙-129气体,核自旋极化度的建立时间分别为15 min和22 min.由于混合工作气体的压力以及组分会导致铷原子吸收线的频移和展宽,并且影响到其线型,实验通过低场NMR系统测量确定了用于自旋交换光泵的最佳激光工作波长.低场NMR测量为获得具有高核自旋极化度的超极化气体氙-129,并且能够用于人体肺部MRI研究提供了实验依据.  相似文献   

20.
We observe an interference between RF irradiation used for homonuclear decoupling of 19F and conformational exchange in the 13C spectrum of perfluorocyclohexane. We show that these effects can be readily reproduced in simulation, and characterise their dependence on the various NMR and experimental parameters. Their application to observing exchange rates on the kHz timescale is evaluated with respect to T(1rho) measurements and the connections between the two approaches established. The implications for experiments that use homonuclear decoupling of 1H to resolve 1J(CH)couplings in the solid-state are also evaluated in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号