首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrical aspects of aircraft jet engine operation are considered. A phenomenon previously observed experimentally, namely, the disappearance of the engine current and alternating electric signal induced by the engine jet in the afterburner regime, is explained. It is shown that this phenomenon results from the detachment of electrons from negative ions when the gas temperature in the afterburner increases. This leads to an increase in the effective conductivity of the gas. As a result, the engine current circuit is closed on the internal duct walls and engine charging becomes insignificant.A physico-mathematical model of the electrical processes in the afterburner is formulated and model problems are solved.  相似文献   

2.
The problem of electric current (engine current) formation in aircraft jet engine ducts as a result of the development of electrical diffusion boundary layers on the surfaces of the duct and internal engine components is investigated. It is assumed that the outer flow containing electrons and positive ions is quasi-neutral and that the electrical quasi-neutrality is violated (and the electric engine current develops) in the wall flow zone as a result of the difference between the electron and ion diffusion coefficients. The problem of the development of an electrical diffusion boundary layer inside the turbulent gasdynamic boundary layer on a plane surface is formulated and solved. The engine current distribution along the duct is found for various values of a turbulent viscosity on the boundary of the gasdynamic boundary layer which affect the laminar-turbulent transition point.The electrical diffusion processes that occurs when an electrically quasi-neutral hydrodynamic stream impinges on a plane surface (simulation of the flow in the neighborhood of a stagnation point) is studied. In this case the Navier-Stokes equations have a self-similar solution. It is shown that the system of electrohydrodynamic equations also has a self-similar solution. The electrical parameter fields are determined and the engine current is found on the basis of this solution.  相似文献   

3.
An approximate method is described for the consideration of energy transfer by radiation during the utilization of real properties of a gas (in particular, the frequency-dependent absorption coefficient under conditions of local thermal equilibrium). With increasing pressure, it becomes necessary to take self-absorption into account over almost the entire frequency spectrum.Calculations are carried out for a wall-stabilized cylindrical electric arc in hydrogen as an example for a pressure of 100 atm and channel radii of 0.3, 1, and 3 cm at values of current strength up to the order of 10 A. The strong effect of radiation on the current-voltage characteristic of the arc, the gas temperature, and the nature of its distribution over the arc radius is demonstrated.The process of energy transfer by radiation plays a significant and sometimes predominant role in the thermal balance of electric arcs with high current strengths [1–9]. Calculations have been performed for cylindrical arcs in atmospheres of argon and hydrogen [5, 7] with allowance for energy transfer by radiation and for atmospheric pressure in which case the gas is essentially transparent to radiation. Approximate estimates were obtained for the self-absorbed portion of the radiation.The role played by radiation increases with increasing current strength, arc radius, and pressure, while self-absorption in this process extends over an increasingly large region of the spectrum. Hence, calculations must be carried out for the arc if conditions are such that the gas in the arc does not transmit radiation.In [10–13], an approximate method was developed for taking into account energy transfer by radiation in the presence of intense selfabsorption as applied to heat transfer problems under conditions of local thermal equilibrium with allowance for the variation of the absorption coefficient as a function of the frequency. The conditions for local thermal equilibrium in an arc passing through an argon or hydrogen atmosphere are fulfilled for pressures greater than atmospheric pressure and for current strengths greater than 10 A [14–16], The results of [10–12] were used as the foundation for calculations based on an electric arc in argon at atmospheric pressure, under which conditions, self-absorption affects only the transitions to the ground state. The part played by radiation in the heat transfer process is smaller than the part played in the energy transfer by conduction. Calculations confirmed the results of [5, 7].The role of energy transfer by radiation in the energy balance of the arc increases with increasing pressure, while in turn, the role of the continuous spectrum increases for the radiation. The results of calculations performed for a wall-stabilized arc burning in an atmosphere of hydrogen at a pressure of 100 atm are given in the present paper. In this case, almost the entire energy supply is lost by radiation. The approximate method of accounting for energy transfer by radiation is demonstrated by an example.Notation and T gas density and temperature, respectively - u velocity - cp heat capacity of the gas at constant pressure - coefficient of thermal conductivity - coefficient of electrical conductivity - x and r cylindrical coordinates - r0 channel radius - I current strength - E electric field strength - u ° equilibrium value of radiation energy density - u value of radiation energy density - radiation frequency - divergence of energy flux density transported by radiation - k absorption coefficient - c speed of light - i emissivity of the i-th region of the spectrum  相似文献   

4.
It is found that the load capacity of a magnetohydrodynamic thrust bearing with a rotating disk can be increased by rotating the axial magnetic field at a suitable speed in a direction opposite to that of the disk rotation. This method of improving the bearing performance is considered to be efficient if the Hartmann number is not too large. Thus for a given load, the size and weight of the magnet to be used in a thrust bearing with rotating field can be reduced considerably.Nomenclature a radius of plenum recess - b outside disk radius - B 0 magnetic induction of applied axial magnetic field - hE 0 1/2/a 1/2, nondimensionalized electric field - E 0 radial electric field at r=a - E r radial electric field - h half of lubricant film thickness - M (B 0 2 h 2/)1/2, Hartmann number - P pressure - P e pressure at r=b - P 0 pressure at r=a - Q volume flow rate of lubricant - Q 0 volume flow rate of a nonrotating bearing in the absence of applied magnetic field - r radial coordinate - u, v fluid velocity components in radial and circumferential directions, respectively - W load capacity of bearing - W 0 load capacity of a nonrotating bearing in the absence of a magnetic field having a flow rate which the same bearing would have at Hartmann number M - z axial coordinate - azimuthal coordinate - coefficient of viscosity of lubricant - e magnetic permeability - fluid density - electrical conductivity - angular velocity of rotating disk - C critical disk velocity at which W=0 - M angular velocity of axial magnetic field - optimum angular velocity of magnetic field On leave of absence from Department of Aero-Space Engineering, University of Notre Dame, Notre Dame (Ind.), U.S.A.  相似文献   

5.
The aerodynamic characteristics and distinctive features of the flow past hypersonic integral-layout flight vehicles with air-breathing engines intended for cruising atmospheric flight are experimentally investigated. The experiments were conducted on a simplified model designed with regard for the general principles of integration for vehicles of the class considered. The tests were run in a high-speed supersonic wind tunnel over the Mach and Reynolds number ranges 4 M 9 and 105 Re0 106.Balance testing was conducted, the pressure distributions over the vehicle surface were measured, the flowfield parameters were determined using a moving total-pressure tube, and flow shadowgraphs were obtained. The measured data are compared with the results of the calculations for three-dimensional inviscid flows. The effects of mounting a nacelle and contouring the internal duct are considered. The effect of the corrections on the duct flow in the absence of jet modeling is estimated.  相似文献   

6.
Summary The problem of flow development from an initially flat velocity profile in the plane Poiseuille and Couette flow geometry is investigated for a viscous fluid. The basic governing momentum and continuity equations are expressed in finite difference form and solved numerically on a high speed digital computer for a mesh network superimposed on the flow field. Results are obtained for the variations of velocity, pressure and resistance coefficient throughout the development region. A characteristic development length is defined and evaluated for both types of flow.Nomenclature h width of channel - L ratio of development length to channel width - p fluid pressure - p 0 pressure at channel mouth - P dimensionless pressure, p/ 2 - P 0 dimensionless pressure at channel mouth - P pressure defect, P 0P - (P)0 pressure defect neglecting inertia - Re Reynolds number, uh/ - u fluid velocity in x-direction - mean u velocity across channel - u 0 wall velocity - U dimensionles u velocity u/ - U c dimensionless centreline velocity - U 0 dimensionless wall velocity - v fluid velocity in y-direction - V dimensionless v velocity, hv/ - x coordinate along channel - X dimensionless x-coordinate, x/h 2 - y coordinate across channel - Y dimensionless y-coordinate, y/h - resistance coefficient, - 0 resistance coefficient neglecting inertia - fluid density - fluid viscosity  相似文献   

7.
A finite element method is used to solve the full Navier-Stokes and energy equations for the problems of laminar combined convection from three isothermal heat horizontal cylinders in staggered tube-bank and four isothermal heat horizontal cylinders in in-line tube-bank. The variations of surface shear stress, pressure and Nusselt number are obtained over the entire cylinder surface including the zone beyond the separation point. The predicted values of total, pressure and friction drag coefficients, average Nusselt number and the plots of velocity flow fields and isotherms are also presented.
Die Finite-Elemente-Lösung von laminarer Strömung und kombinierter Konvektion von Luft in einer versetzten oder fluchtenden Rohranordnung
Zusammenfassung Eine Methode der finiten Elemente wird zur Lösung der vollständigen Navier-Stokes- und der Energiegleichung für die Probleme der laminaren kombinierten Konvektion an drei isothermen geheizten horizontalen Zylindern in versetzter Rohranordnung sowie für vier isotherme geheizte horizontale Zylinder in fluchtender Anordnung verwendet.Die Veränderung der Wandschubspannung, des Druckes und der Nusselt-Zahl werden für die gesamte Zylinderoberfläche, einschließlich des Bereiches nach dem Ablösepunkt, bestimmt. Die Werte des gesamten Widerstandsbeiwertes aufgrund von Druck und Reibung, die durchschnittliche Nusselt-Zahl und die Diagramme des Geschwindigkeitsfeldes und der Isothermen werden ebenfalls aufgezeigt.

Nomenclature C specifie heat - C D total drag coefficient - C f friction drag coefficient - C p pressure drag coefficient - D diameter of cylinder,L=2R 0 - G, g gravitational acceleration - Gr Grashof number, g(TwT )D 3/v 2 - h local heat transfer coefficient - K thermal conductivity - L spacing between the centers of cylinder - M l shape function - N i shape function - Nu, local and average Nusselt numbers - P dimensionless pressure, p*/u 2 - p *,p pressure, free stream pressure - Pe Peclet number,RePr - Pr Prandtl number, c/K - Ra Rayleigh number,Gr Pr - Re Reynolds number,Du /v - R 0 radius of cylinder - T temperature - T w temperature on cylinder surface with fixed value - T free stream temperature - v dimensionless x-direction component of velocity,v */u - u * x-direction component of velocity - u free stream velocity - v dimensionless Y-direction component of velocity,v */u - v * Y-direction component of velocity - X x-direction axis - x dimensionless x-direction coordinate,x */D - x* x-direction coordinate - Y Y-direction axis - y dimensionless Y-direction coordinate,y */D - y * Y-direction coordinate Greek symbols coefficient of volumetric thermal expansion - plane angle - dynamic viscosity - kinematic viscosity, / - density of fluid - w dimensionless surface shear stress, * w /u 2 - skw/* surface shear stress - dimensionless temperature,   相似文献   

8.
The injection moulding of thermoplastic polymers involves, during mould filling, flows of hot melts into mould networks, the walls of which are so cold that frozen layers form on them. Theoretical analyses of such flows are presented here. Br Brinkman number - c L polymer melt specific heat capacity - c S frozen polymer specific heat capacity - e exponential function - erf() error function - Gz Graetz number in thermal entrance region - Gz * modified Graetz number in thermal entrance region - Gz overall Graetz number - h channel half-height - h * half-height of polymer melt region - H mean heat transfer coefficient - k L polymer melt thermal conductivity - k S frozen polymer thermal conductivity - ln( ) natural logarithm function - L length of thermal entrance region in pipe or channel - m viscosity shear rate exponent - M(,,) Kummer function - Nu Nusselt number - p pressure - P pressure drop in thermal entrance region - P f pressure drop in melt front region - Pe Péclet number - Pr Prandtl number - Q volumetric flow rate - r radial coordinate in pipe - R pipe radius - R * radius of polymer melt region - Re Reynolds number - Sf Stefan number - t time - T temperature - T i inlet polymer melt temperature - T m melting temperature of polymer - T w pipe or channel wall temperature - U(,,) Kummer function - u r radial velocity in pipe - u x axial velocity in channel - u y cross-channel velocity - u z axial velocity in pipe - V melt front velocity - w channel width - x axial coordinate in channel - x f melt front position in channel - y cross-channel coordinate - z axial coordinate in pipe - z f melt front position in pipe - () gamma function - dimensionless thickness of frozen polymer layer - i i-th term (i = 1,2,3) in power series expansion of - dimensionless axial coordinate in pipe - f dimensionless melt front position in pipe - dimensionless cross-channel coordinate - * dimensionless half-height of polymer melt region - dimensionless temperature - i i-th term (i = 0, 1, 2, 3) in power series expansion of - i first derivative of i with respect toø - i second derivative of i with respect toø - * dimensionless wall temperature - thermal diffusivity ratio - - latent heat of fusion - µ viscosity - µ * unit shear rate viscosity - dimensionless axial coordinate in channel - f dimensionless melt front position in channel - dimensionless pressure drop in thermal entrance region - f dimensionless pressure drop in melt front region - L polymer melt density - s frozen polymer density - dimensionless radial coordinate in pipe - * dimensionless radius of polymer melt region - ø dimensionless similarity variable in thermal entrance region - dummy variable - dimensionless contracted axial coordinate in thermal entrance region - dimensionless similarity variable in melt front region - * constant  相似文献   

9.
The solution is given of the equations of a three-dimensional stationary electrostatic beam of charged particles of like sign filling the region between two nearby curvilinear surfaces. We assume that the flow is nonrotational and nonrelativistic and that the velocity vector is a single-valued function. The solution is constructed in the form of an asymptotic series in powers of the small parameter , which is the ratio of the characteristic transverse (a) and longitudinal (l) dimensions of the problem. The first dimension is taken to be the distance between the electrodes, andl defines the scale at which the geometric and physical parameters (emitter curvature, electric field E on the emitter, and the emission current density J) change noticeably. The emission regimes limited by the space charge (-regime), temperature (T-regime), and the case of nonzero initial velocity (U-regime) are studied. The asymptotic behavior is given by the formulas for the corresponding one-dimensional flow between parallel surface.The solution of the boundary problem for emission in the-regime reduces to determination of the emission current density J for fixed electrode geometry and given accelerating voltage. The corresponding formulas are presented, retaining terms of order 3.Two approximations with respect to are performed for the T- and U-regimes. Here the unknown quantity for given properties of the emitting surface (J) will be the electric field E.The results provided by the constructed expansions are compared with the exact solution for flow from a planar emitter along circular trajectories [1]. As an example we examine the two-dimensional problem of flow between two nearby circular cylindrical electrodes with disruption of the coaxiality.The conventional tensor notations are used.  相似文献   

10.
Summary A model has been developed for the flow of a non-Newtonian fluid past a porous sphere. The drag force exerted on a porous sphere moving in a power-law fluid is obtained by an approximate solution of equations of motion in the creeping flow regime. It is predicted that the effect of the pseudoplastic anomaly on the drag force is more pronounced at large porosity parameters.
Zusammenfassung Es wird ein Modell für die Strömung einer nichtnewtonschen Flüssigkeit längs einer porösen Kugel entwickelt. Die auf die in einer Ostwald-DeWaele-Flüssigkeit bewegte Kugel ausgeübte Reibungskraft wird durch eine Näherungslösung der Bewegungsgleichungen für schleichende Strömung gewonnen. Man findet, daß der Einfluß der Abweichung vom newtonschen Verhalten um so ausgeprägter wird, je größer die Porosität ist.

A, B, C, D a, b, c, d coefficients in eqs. [10] and [18] - F D drag force - K consistency index in power-law model - k 1 ,k 2 coefficients defined by eq. [18] - m porosity parameter - n flow index in power-law model - P pressure - P * dimensionless pressure defined by eq. [4] - P pressure difference - R radius of porous sphere - r radial distance from the center of the sphere - U velocity of uniform stream - u i velocity component - u i * dimensionless velocity component defined by eq. [4] - Y drag force correction factor defined by eq. [27] - ij rate of deformation tensor - ij * dimensionless rate of deformation tensor defined by eq. [4] - , spherical coordinates - dimensionless radial distance defined by eq. [4] - second invariant of rate of deformation tensor - * dimensionless second invariant of rate of deformation tensor defined by eq. [4] - ij stress tensor - ij * dimensionless stress tensor defined by eq. [4] - stream function - * dimensionless stream function defined by eq. [4] - i inside the surface of the sphere - o outside the surface of the sphere With 1 figure and 1 table  相似文献   

11.
The theory of a vibrating-rod densimeter   总被引:1,自引:0,他引:1  
The paper presents a theory of a device for the accurate determination of the density of fluids over a wide range of thermodynamic states. The instrument is based upon the measurement of the characteristics of the resonance of a circular section tube, or rod, performing steady, transverse oscillations in the fluid. The theory developed accounts for the fluid motion external to the rod as well as the mechanical motion of the rod and is valid over a defined range of conditions. A complete set of working equations and corrections is obtained for the instrument which, together with the limits of the validity of the theory, prescribe the parameters of a practical design capable of high accuracy.Nomenclature A, B, C, D constants in equation (60) - A j , B j constants in equation (18) - a j + , a j wavenumbers given by equation (19) - C f drag coefficient defined in equation (64) - C f /0 , C f /1 components of C f in series expansion in powers of - c speed of sound - D b drag force of fluid b - D 0 coefficient of internal damping - E extensional modulus - force per unit length - F j + , F j constants in equation (24) - f, g functions of defined in equations (56) - G modulus of rigidity - I second moment of area - K constant in equation (90) - k, k constants defined in equations (9) - L half-length of oscillator - Ma Mach number - m a mass per unit length of fluid a - m b added mass per unit length of fluid b - m s mass per unit length of solid - n j eigenvalue defined in equation (17) - P power (energy per cycle) - P a , P b power in fluids a and b - p pressure - R radius of rod or outer radius of tube - R c radius of container - R i inner radius of tube - r radial coordinate - T tension - T visc temperature rise due to heat generation by viscous dissipation - t time - v r , v radial and angular velocity components - y lateral displacement - z axial coordinate - dimensionless tension - a dimensionless mass of fluid a - b dimensionless added mass of fluid b - b dimensionless drag of fluid b - dimensionless parameter associated with - 0 dimensionless coefficient of internal damping - dimensionless half-width of resonance curve - dimensionless frequency difference defined in equation (87) - spatial resolution of amplitude - R, , , s , increments in R, , , s , - dimensionless amplitude of oscillation - dimensionless axial coordinate - ratio of to - a , b ratios of to for fluids a and b - angular coordinate - parameter arising from distortion of initially plane cross-sections - f thermal conductivity of fluid - dimensionless parameter associated with - viscosity of fluid - a , b viscosity of fluids a and b - dimensionless displacement - j jth component of - density of fluid - a , b density of fluids a and b - s density of tube or rod material - density of fluid calculated on assumption that * - dimensionless radial coordinate - * dimensionless radius of container - dimensionless times - rr rr, r radial normal and shear stress components - spatial component of defined in equation (13) - j jth component of - dimensionless streamfunction - 0, 1 components of in series expansion in powers of - phase angle - r phase difference - ra , rb phase difference for fluids a and b - streamfunction - j jth component defined in equation (22) - dimensionless frequency (based on ) - a , b dimensionless frequency in fluids a and b - s dimensionless frequency (based on s ) - angular frequency - 0 resonant frequency in absence of fluid and internal damping - r resonant frequency in absence of internal fluid - ra , rb resonant frequencies in fluids a and b - dimensionless frequency - dimensionless frequency when a vanishes - dimensionless frequencies when a vanishes in fluids a and b - dimensionless resonant frequency when a , b, b and 0 vanish - dimensionless resonant frequency when a , b and b vanish - dimensionless resonant frequency when b and b vanish - dimensionless frequencies at which amplitude is half that at resonance  相似文献   

12.
We investigate the problem of electrical charging of bodies as a result of charged-particle extraction by a hydrodynamic flow. The analysis is performed in view of the application to the problem of motion electrification of aircraft caused by a stream of charged particles into the surrounding space. We formulate the appropriate system of nonstationary electrohydrodynamic equations. It is shown that in many applications the charging of electrically insulated bodies consists of two successive intermediate processes. The first process is the formation of charge Q on the body in time T1 The second process consists of a change of the body potential (with a constant charge Q) as a consequence of the stream of charged particles into the outside space noted above. At the end of the second process (with duration T2) the body potential is at . We also investigate the problem of charging a spherical source of neutral and charged particles. Using the analytical solution we find the quantities Q and and the characteristic times T1 and T2. It is shown that the time T2 can exceed T1 by several orders of magnitude. We formulate the problems of nonstationary electric fields during the extraction of several types of particles.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 94–103, September–October, 1977.  相似文献   

13.
The results of a combined experimental and numerical study on droplet behavior within an electrohydrodynamic fine spray are presented. The fine spray exists in the transition region between the multiple cone-jet and rim emission spray modes. Experiments were conducted specifically to characterize the motion of droplets within the spray. Light-sheet visualizations and measurements of droplet speed and velocity using laser-based, single-particle counters were obtained. Additionally, a numerical simulation of the droplet motion within the spray was made and compared to the experimental results. The electrohydrodynamic fine spray of ethanol droplets ( 1 to 40 m diameter) was generated using a typical capillary-plate configuration, with a capillary tip electric field intensity of 106 V/m and a spray charge density of 70 C/m3. Acquired images of the spray revealed a zone of rapid expansion near the capillary followed by a more gradual expansion farther from the capillary. In situ laser-diagnostic measurements confirmed these observations. Measured droplet speeds decreased rapidly with increasing axial distance from the capillary, but then increased beyond the spray's axial mid-plane as a result of a change in the sign of the axial internal electric field. Droplet axial velocity components behaved similarly. The radial velocity components exhibited a maximum value off of the spray's centerline in the near-capillary region. Farther away from the capillary, they increased monotonically with increasing radial position. These trends identified the significant role that the radial internal electric field plays in spray expansion. The numerical simulation of the normal spray verified the inferred change in sign of the axial internal field and underscored the dominant contribution of the external electric field in the near-capillary region and of the internal electric field farther away.  相似文献   

14.
The finite element solutions of the full Navier-Stokes and energy equations for steady laminar flow and combined convection around square prisms with attack angles of 0° and 45° are obtained for a gas having Pr=0.7. The variations of surface shear stress, local pressure and Nusselt number are obtained over the entire prism surface including the zone beyond the point of the separation. The predicted values of drag coefficients, the location of separation, average Nusselt number and the plots of velocity flow fields and isotherms are also presented. The trend of the present numerical results seems reasonable.
Finite-Elemente-Verfahren für laminare Strömung und kombinierte Naturkonvektion um ein quadratisches Prisma
Zusammenfassung Es wird über Lösungen der Navier-Stokesund der Energiegleichungen mit Hilfe der Finite-Elemente-Methode für stationäre laminare Strömung, kombiniert mit Naturkonvektion, um ein quadratisches Prisma berichtet, wobei als Anströmwinkel 0° und 45° gewählt wurden und Gasströmung mitPr=0,7 angenommen wurde. Die Rechnung ergibt den Verlauf der Wandschubspannungen, des örtlichen Druckes und der Nusselt-Zahl über die gesamte Oberfläche des Prismas, einschließlich des Bereiches hinter dem Ablösepunkt. Weiterhin werden in dem Aufsatz Angaben gemacht über die Widerstandskoeffizienten, die Lage des Ablösepunktes, der mittleren Nusselt-Zahl sowie der Geschwindigkeits- und Temperaturfelder. Die numerischen Ergebnisse erscheinen im Trend vernünftig zu sein.

Nomenclature a side length of square - C f friction drag coefficient - C p pressure drag coefficient - C D total drag coefficient - F f total friction drag force - F P total pressure drag force - Gr Groshoff number,g (T w -T )a 3/v 2 - g gravitational acceleration - h local heat transfer coefficient - K thermal conductivity - L dimensionless location of surface from the front stagna tion point,L */a - L * dimension location of prism surface - Lc location of separation - N j shape function - Nu, local and average Nusselt numbers - M l shape function - P dimensionless pressure,p */u 2 - P * pressure - p x * x-componentP * - Pe Peclet number,Re Pr - Pr Prandtl number, c/K - Ra Rayleigh number,Gr Pr - Re Reynolds number,a u /v - s direction along the sides of prism - u dimensionlessX-direction component of velocity,u */u - u * X-direction component of velocity - u free stream velocity - dimensionlessY-direction component of velocity,v*/u - * Y-direction component of velocity - X X-direction axis - x dimensionlessX-direction coordinate,x */a - x * X- direction coordinate - Y Y-direction axis - y * dimensionless 7-direction coordinate,y */a - y * Y-direction coordinate Greek symbols coefficient of volumetric thermal expansion - attack angle - dynamic viscosity - kinematic viscosity,/ - density of fluid - w dimensionless surface shear stress, w * /u 2 - w * surface shear stress - wx * x-component of w /* - dimensionless temperature,   相似文献   

15.
Summary Circumferential motion of a conducting lubricant in a hydrostatic thrust bearing is caused either by the angular motion of a rotating disk or by the interaction of a radial electric field and an axial magnetic field. Under the assumption that the fluid inertia due to radial motion is negligibly small in comparison with that due to angular motion, it is found analytically that the rotor causes an increase in flow rate and a decrease in load capacity, while both are increased by the application of an electric field in the presence of an axial magnetic field. The critical angular speed of the rotor at which the bearing can no longer support any load is obtained, and the possibility of flow separation in the lubricant is discussed.Nomenclature a recess radius - b outside disk radius - B 0 magnetic induction of uniform axial magnetic field - E 0 radial electric field at r=a - E r radial electric field - h half of lubricant film thickness - M Hartmann number = (B 0 2 h 2/)1/2 - P pressure - P 0 pressure at r=a - P e pressure at r=b - Q volume flow rate of lubricant - Q 0 flow rate of a nonrotating bearing without magnetic field - r radial coordinate - r s position of flow separation on stationary disk - u, v fluid velocity components in radial and circumferential directions, respectively - W load carrying capacity of bearing - W 0 load capacity of a nonrotating bearing without magnetic field - z axial coordinate - coefficient of viscosity - e magnetic permeability - fluid density - electrical conductivity - electric potential - angular speed of rotating disk - c critical rotor speed at which W=0  相似文献   

16.
The electrical charging of capillary jets has a strong influence on their stability [1–10]. Well-known theoretical studies have been devoted to the linear [1–6], weakly linear [7], or finite-amplitude [10] stability of such jets in a constant electric field. In the present paper, an investigation is made in the framework of the full nonlinear equations. The main attention is devoted to effects associated with allowance for a time-variable electric field. It is shown that a sharp decrease of the surface charge may lead to an appreciable decrease in the size of the satellite droplets; allowance for the long-wavelength background also leads to a decrease in the size of the satellite droplets. In contrast, a sharp increase of the surface charge increases the relative contribution of the satellite droplets. At the same time, introduction of small-scale background perturbations can lead to a decrease in the contribution of the fine satellite droplets and to a weakening of their reaction to a rapidly increasing electric field. It is shown that the degree of monodisperseness can be increased by a relatively slowly varying electric field. An averaged effect of an electric field that varies rapidly in time is found. Appreciable increase of the initial perturbation amplitude in the case of a periodically varying electric field can lead to an appreciable increase in the degree of monodisperseness. The introduction of short-wavelength perturbations in a periodic electric field with large amplitude of the pulsations can lead to disappearance of the satellite droplets.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 55–62, March–April, 1991.  相似文献   

17.
It is well known that articulation may cause the electric and thermal conducting properties of a medium to become anisotropic. Extensive experimental data relating to the conductivity of rock were presented in [1], and according to these data the ambient resistance in the case of an orderly arrangement of cracks noticeably depends on the direction along which it is measured; an ellipsoid of resistance anisotropy can be constructed from the measurement results. A pronounced correlation between the orientations of the resistivity extrema and the orientation of the crack system is observed here. A comparison betwen the direction rose of the fractures and the direction rose of the articulation carried out for different regions has shown that they are identical. A crack density tensor T describing the average (with respect to a given volume) geometry of the articulation has been introduced [2, 3]. In the current work, it is proved that T can be effectively used in problems involving anisotropic electrical and thermal conductivity. The resistivity tensor and thermal-conductivity coefficient tensor K, which characterize the anisotropy of the electrical and thermal conducting properties, are expressed in terms of t. The structure of this relation is established; the equations presented allow us to find the form of and K if the articulation parameters are known.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 141–144, January–February, 1976.  相似文献   

18.
Summary An analysis is made of the transient temperature behavior of a transpiration-cooled porous matrix entering a planetary atmosphere with constant velocity and negative entry angle. The analysis is based on one dimensional heat conduction in a porous plate subjected to a time dependent heat flux at one side and cooled internally by mass injection from a constant temperature reservoir at the opposite side. An exact closed-form solution is obtained and temperature charts are presented for a wide range of Fourier number and coolant flow parameters.Nomenclature A surface area, ft2 - C constant, 17,600 Btu/ft3/2-sec - C c constant pressure specific heat of coolant, Btu/lbm-°F - g local gravitational acceleration, ft/sec2 - g c coolant flow parameter, defined by equation (15) - h height of entry above planet surface, ft - K 1 ratio of local heat flux to stagnation point heat flux - K thermal conductivity of plate material, Btu/sec-ft-°F - L plate thickness, ft - m constant, 3.15 - m c coolant mass flow rate, lbm/sec - M n roots of equation (33) - n constant, 0.50 - N defined by equation (30) - P porosity - q surface heat flux, Btu/ft2-sec - q 0 surface heat flux at t=0, Btu/ft2-sec, defined by (6) - r distance from planet center, ft - R radius of curvature at stagnation point, ft - t time, sec - T temperature, °F - T c coolant supply temperature, °F - V velocity, ft/sec - x normal coordinate through plate, ft - y altitude, ft - thermal diffusivity of plate, ft2/sec - atmospheric density decay parameter, 1/23500 ft–1 - flight path angle relative to local horizontal direction, positive for climbing and negative for descent, deg - dimensionless temperature parameter, defined by (12) - dimensionless distance, defined by (13) - free stream atmospheric density, slug/ft3 - 0 atmospheric density at reference state, slug/ft3 - Fourier number, defined by (14) - 1/sec, defined by (7) - flight entry parameter, defined by (16)  相似文献   

19.
The evaluation of a pump test or a slug test in a single well that completely penetrates a leaky aquifer does not yield a unique relation between the hydraulic properties of the aquifer, independent of the testing conditions. If the flow is transient, the drawdown is characterized by a single similarity parameter that does not distinguish between the storativity and the leakage factor. If the flow is quasi stationary, the drawdown is characterized by a single similarity parameter that does not distinguish between the transmissivity and the leakage factor. The general non steady solution, which is derived in closed form, is characterized bythree similarity parameters.Nomenclature a e 0.8905 = auxiliary parameter - b thickness of the aquifer - b c thickness of the semipervious stratum - B() auxiliary function - f(s),g(s) auxiliary functions in the complex plane - F(t),G(t) auxiliary functions of time - h undisturbed level of the phreatic surface - K conductivity of the aquifer - K c conductivity of the semipervious stratum - m 0 leakage factor - m dimensionless leakage factor - N(s) auxiliary function in the complex plane - Q w (t) discharge flux - Q steady discharge flux - Q 0 constant discharge flux during limited time - Q(t) dimensionless discharge flux - r 0 radius of the well - r radial coordinate - r dimensionless radial coordinate - s complex variable - s 0 pole - S storativity of the aquifer - S n n'th part of an integration contour - t time - t dimensionless time - T transmissivity of the aquifer - ,,,,, dimensionless parameters - Euler's number - dummy variable - 1(), 2() auxiliary functions - (r, t) drawdown - 0(t) drawdown in the well - (r, t) dimensionless drawdown - 0(t) dimensionless drawdown in the well  相似文献   

20.
Summary Previous work on the creeping flow of viscoelastic fluids past a sphere is reviewed. Theoretical analyses available in the literature were obtained for weakly elastic fluids and therefore they predict only a small influence of fluid elasticity on the drag. In this paper, an approximate theoretical analysis is given for the creeping flow past a rigid sphere in an unbounded medium. The analysis uses a variational principle to solve the equations of motion and continuity in conjunction with the Carreau constitutive equation. The theoretical results are presented in terms of a correction factor to the Newtonian drag coefficient. The correction factor is a function of the power law flow behaviour indexn, the ratio of limiting viscosities ( 0)/0 and a dimensionless time which reflects the elastic nature of the fluids. The results are presented in graphical form covering a realistic range of these dimensionless groups.In order to verify the theoretical predictions, the drag coefficient of a number of spheres was measured in a series of shear thinning elastic test fluids. The flow properties of the test fluids were independently measured with a Weissenberg Rheogoniometer. The power law index of the test fluids varied between 1.0 and 0.4. Particle Reynolds number based on 0 was in the range of 410–6 to 410–2. The difference between theoretically predicted values of drag coefficient and the experimentally measured values is less than ±7.5%. In addition, it is found that the Carreau viscosity equation can be used to predict the elastic parameter of primary normal stress difference with moderate to good accuracy for all the polymer solutions used in this work.
Zusammenfassung Einleitend wird ein Überblick über die früheren Untersuchungen betreffend die schleichende Strömung um eine Kugel gegeben. Die in der Literatur vorliegenden theoretischen Analysen sind auf schwach viskoelastische Flüssigkeiten beschränkt und sagen deshalb nur einen geringen Einfluß der Elastizität auf den Widerstand voraus. In dieser Veröffentlichung wird dagegen eine genäherte theoretische Analyse für die schleichende Strömung um eine starre Kugel in einem unendlich ausgedehnten Medium gegeben, bei welcher zur Lösung der Bewegungsgleichungen und der Kontinuitätsgleichung in Verbindung mit den rheologischen Stoffgleichungen vonCarreau ein Variationsprinzip verwendet wird. Die theoretischen Ergebnisse werden mittels eines Korrekturfaktors zum newtonschen Widerstandskoeffizienten beschrieben. Dieser Korrekturfaktor ist eine Funktion des Potenz-Gesetz-Exponentenn, des Verhältnisses der Grenzviskositäten ( 0)/0 und einer dimensionslosen Zeit, welche das elastische Verhalten kennzeichnet. Die Ergebnisse werden in graphischer Form unter Zugrundelegung eines realistischen Wertebereichs dieser dimensionslosen Gruppen dargestellt.Um diese theoretischen Voraussagen zu verifizieren, wurde der Widerstandskoeffizient für eine Anzahl von Kugeln in einer Reihe von Scherentzähung aufweisenden elastischen Probeflüssigkeiten gemessen. Die Fließeigenschaften dieser Flüssigkeiten wurden zusätzlich mit dem Weissenberg-Rheogoniometer bestimmt. Der Potenz-Gesetz-Exponent variierte dabei zwischen 1,0 und 0,4. Die auf den Kugeldurchmesser und die Nullviskosität bezogenen Reynolds-Zahlen lagen zwischen 410–6 und 410–2. Der Unterschied zwischen theoretisch vorausgesagten und experimentell bestimmten Widerstandskoeffizienten war kleiner als ±7,5%. Außerdem wurde noch gefunden, daß die Viskositätsgleichung vonCarreau dazu verwendet werden kann, den elastischen Parameter erste Normalspannungs-Differenz für alle in dieser Untersuchung verwendeten Polymerlösungen mit mäßiger bis guter Genauigkeit vorauszusagen.

Notation C d drag coefficient - d diameter of sphere - f external body forces in equation of motion [2] - F d drag force - g acceleration due to gravity - J integral defined in eq. [3] - n a parameter in the Carreau viscosity eq. [6] - p isotropic pressure term in equation of motion [2] - r,, spherical coordinates - R radius of sphere - Re 0, Re1 Reynolds numbers defined in eq. [16] - t time - u i ,u j velocities in equation of motion [2] - u r ,u r and components of velocity - V terminal velocity of sphere in unbounded medium - V volume, in eq. [3] - X correction factor to the drag force, eq. [14] - y,z dimensionless spherical coordinates, eq. [9] - ratio of two Reynolds numbers given by eq. [16] - shear rate - apparent viscosity - 0, zero shear rate and infinite shear rate viscosities respectively - a parameter in the Carreau viscosity eq. [6] - the dimensionless time, defined in eq. [11] - second invariant of the rate of deformation tensor - a parameter in the stream function, eq. [8] - stream function - p,f densities of sphere and fluid respectively With 7 figures and 1 table  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号