首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The transient sound field caused by a Dirac delta impulse function above an infinite locally reacting plane can be calculated by applying the inverse Fourier transform of the corresponding half-space Green's function in frequency domain. As a starting point, the representation given by Ochmann [J. Acoust. Soc. Am. 116(6), 3304-3311 (2004)] is used, which consists of discrete and continuous superposition of point sources. For a locally reacting plane with masslike character and also with pure absorbing behavior, it is possible to express the resulting impulse response in closed form. Such a result is surprising, because corresponding formulations in the frequency domain are not available yet. Hence, the first main result is the closed form solution Eq. (22) for an impulse response over an infinite plane with a pure imaginary impedance. The second main result is the closed form solution Eq. (53) for an impulse response over an infinite plane with a pure real impedance. As a particular application of both main results, a convolution technique is used for deriving formulas for point sources with a general time dependency. For special signals like an exponentially decaying time signal or a triangular shaped impulse, the resulting sound field can be presented in terms of elementary functions.  相似文献   

2.
Traditionally, in moment-method analyses of electromagnetic scattering, the elements of the impedance matrix are calculated as convolutions of the basis elements with the appropriate dyadic Green's function. However, for scattering in the half-space, the vertical and azimuthal copolar terms of the Green's function require evaluation of Sommerfeld integrals which are computationally burdensome. In this paper, it is shown that, in populating the impedance matrix for the half-space problem, evaluation of Sommerfeld integrals is, in fact, not necessary. For monochromatic excitation, the plane-wave expansion of the scattered field constitutes a Fourier transform, in the horizontal plane, of a vector spectral function. This vector function results from the convolution, in the vertical dimension, of the respective angular spectra of the Green's function and the equivalent current. On application of the moment method, through the Weyl identity, the impedance-matrix elements corresponding to the singular terms of the Green's function are convolutions in the horizontal plane of spherical potentials, and Fourier transforms of scalar spectral functions. These scalar functions are derived from the basis elements and, with a judicious choice of basis, they are well behaved and of compact support, and consequently their Fourier transforms can be computed as FFTs.  相似文献   

3.
Ocean acoustic interferometry refers to an approach whereby signals recorded from a line of sources are used to infer the Green's function between two receivers. An approximation of the time domain Green's function is obtained by summing, over all source positions (stacking), the cross-correlations between the receivers. Within this paper a stationary phase argument is used to describe the relationship between the stacked cross-correlations from a line of vertical sources, located in the same vertical plane as two receivers, and the Green's function between the receivers. Theory and simulations demonstrate the approach and are in agreement with those of a modal based approach presented by others. Results indicate that the stacked cross-correlations can be directly related to the shaded Green's function, so long as the modal continuum of any sediment layers is negligible.  相似文献   

4.
In this paper the complex-image approximation to the reflection coefficient for water over a seabed half-space is used to generate an image representation for a bounded acoustic waveguide with an underlying layered seabed. The images are true point sources; they have constant amplitudes which are raypath independent and, in the case of a Pekeris waveguide, frequency-independent. This image representation is ideal for constructing the Green's function kernel of the boundary integral equation method for target scattering in a waveguide. The singular behavior of the Green's function for an infinitesimal source/receiver separation, possibly with the target adjacent to one of the interfaces, is modeled correctly and the image expansion has a simple analytic form which can be analytically differentiated. The method is also accurate for significant source/receiver separations, which means that it can be used in the modeling of scattering from large-sized objects and can also be used as an efficient and accurate short-range propagation model for harmonic and broadband propagation in a penetrable waveguide.  相似文献   

5.
声场匹配波叠加法的水下结构声辐射预报   总被引:5,自引:0,他引:5       下载免费PDF全文
提出了一种适用于典型结构声辐射预报的声场匹配波叠加方法。该方法利用少量的参考点声压,通过声场匹配搜索等效源分布,得到最小二乘意义下的最优等效源位置。并研究了表面振动测点位置、数目及振动分布的离散性对声场预报精度的影响。最后在半空间消声水池中,对两端带帽圆柱壳的声辐射预报进行了试验验证。结果表明:等效源最佳位置一经确定,即可利用结构的表面振速,对不同激励下的该结构进行声辐射预报。该方法在较宽频段内对不同的振动分布有较好的适应性。   相似文献   

6.
A set of coupled integral equations is formulated for the investigation of sound propagation from an infinitesimal harmonic line source above a hard ground surface corrugated with cuttings. Two half-space Green's functions are employed in the formulation. The first one defined for the upper half space is used to reduce the problem size and eliminate the edge effect resulting from the boundary truncation; the other one for the lower half space is to simplify the representation of the Neumann-Dirichlet map. As a result, the unknowns are only distributed over the corrugated part of the surface, which leads to substantial reduction in the size of the final linear system. The computational complexity of the Neumann-Dirichlet map is also reduced. The method is used to analyze the behavior of sound propagation above textured surfaces the impedance of which is expectedly altered. The effects of number and opening of trench cuttings, and the effect of source height are investigated. The conclusions drawn can be used for reference in a practical problem of mitigating gun blast noise.  相似文献   

7.
Diffraction of a plane sound wave by the open end of an impedance-wall waveguide connected to an opening in an impedance screen is considered. The plane wave is incident on the waveguide from a free half-space. Two versions of the problem are considered: for a semi-infinite waveguide and for a finite-length waveguide with a specified bottom impedance; the impedances of the walls, screen, and waveguide bottom can be different. The finite-length waveguide can be treated as an open cavity in the impedance screen. For the cavity of zero length, the problem is reduced to the diffraction by an impedance insert in the impedance screen. The solution in the external region determines the scattered field; the solution in the internal region allows one to determine the directional pattern of an array of receivers located in the cavity. The problem is solved using the integral Helmholtz equation with a specially selected Green’s function that provides the fulfillment of the boundary conditions. Formally, the problem is reduced to an infinite system of algebraic equations. The computational results obtained for bistatic and monostatic scattering patterns are presented.  相似文献   

8.
Green's functions are derived for elastic waves generated by a volume source in a homogeneous isotropic half-space. The context is sources at shallow burial depths, for which surface (Rayleigh) and bulk waves, both longitudinal and transverse, can be generated with comparable magnitudes. Two approaches are followed. First, the Green's function is expanded with respect to eigenmodes that correspond to Rayleigh waves. While bulk waves are thus ignored, this approximation is valid on the surface far from the source, where the Rayleigh wave modes dominate. The second approach employs an angular spectrum that accounts for the bulk waves and yields a solution that may be separated into two terms. One is associated with bulk waves, the other with Rayleigh waves. The latter is proved to be identical to the Green's function obtained following the first approach. The Green's function obtained via angular spectrum decomposition is analyzed numerically in the time domain for different burial depths and distances to the receiver, and for parameters relevant to seismo-acoustic detection of land mines and other buried objects.  相似文献   

9.
We propose an effective method for calculating the Green's function of an array of identical magnetic-current sheets periodically located on the surface of a circular metal cylinder. The idea of our approach consists in that we explicitly isolate the field singularity at the source by improving the convergence in the Green's function representation. As a result, the residual part of the Green's function can efficiently be calculated numerically. We present numerical results showing the behavior of the Green's function. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 48, No. 4, pp. 331–339, April 2005  相似文献   

10.
New representations and efficient calculation methods are derived for the problem of propagation from an infinite regularly spaced array of coherent line sources above a homogeneous impedance plane, and for the Green's function for sound propagation in the canyon formed by two infinitely high, parallel rigid or sound soft walls and an impedance ground surface. The infinite sum of source contributions is replaced by a finite sum and the remainder is expressed as a Laplace-type integral. A pole subtraction technique is used to remove poles in the integrand which lie near the path of integration, obtaining a smooth integrand, more suitable for numerical integration, and a specific numerical integration method is proposed. Numerical experiments show highly accurate results across the frequency spectrum for a range of ground surface types. It is expected that the methods proposed will prove useful in boundary element modeling of noise propagation in canyon streets and in ducts, and for problems of scattering by periodic surfaces.  相似文献   

11.
An exact analytic solution is derived for the 2D acoustic pressure field generated by a time-harmonic line mass source located above an impedance surface with uniform grazing flow. Closed-form asymptotic solutions in the far field are also provided. The analysis is valid for both locally-reacting and nonlocally-reacting impedances, as is demonstrated by analyzing a nonlocally reacting effective impedance representing the presence of a thin boundary layer over the surface. The analytic solution may be written in a form suggesting a generalization of the method of images to account for the impedance surface. The line source is found to excite surface waves on the impedance surface, some of which may be leaky waves which contradict the assumption of decay away from the surface predicted in previous analyses of surface waves with flow. The surface waves may be treated either (correctly) as unstable waves or (artificially) as stable waves, enabling comparison with previous numerical or mathematical studies which make either of these assumptions.  相似文献   

12.
Existing methods for Green's function extraction give the Green's function from the correlation of field fluctuations recorded at those points. In this work it is shown that the Green's function for acoustic waves can be retrieved from measurements of the integrated energy flux through a closed surface taken from three experiments where two time-harmonic sources first operate separately, and then simultaneously. This makes it possible to infer the Green's function in acoustics from measurements of the energy flux through an arbitrary closed surface surrounding both sources. The theory is also applicable to quantum mechanics where the Green's function can be retrieved from measurement of the flux of scattered particles through a closed surface.  相似文献   

13.
提出了基于半空间球面波函数叠加的声场重构方法,以重构含有限声阻抗边界半空间中声源直接辐射的声场.在半空间中多极子声源声压场的解析解的基础上,构造出以边界声阻抗为参量的半空间球面波函数的正交基;通过求逆获得半空间总声压解的基函数系数,同时也获得声源直接辐射声场即自由空间中的基函数系数,进而重构出声源直接辐射的声场.在边界...  相似文献   

14.
We consider the problem of symmetric excitation of a cylindrical microstrip antenna by two plane waves. The antenna consists of two radiating elements located symmetrically with respect to the azimuth. Each element can be either a single patch or an array of patches of rectangular-cylindrical shape. The problem is reduced to solving an integral equation by the method of moments. A new representation of the Green's function is used. In this representation, the field singularity at the source and the contribution of surface waves are given in analytical form. The scattered field as a function of frequency, the resonant current distribution on the patches, and the far-field pattern are calculated. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 48, No. 6, pp. 52–536, June 2005  相似文献   

15.
Modeling of wave propagation in inhomogeneous media   总被引:1,自引:0,他引:1  
We present a methodology providing a new perspective on modeling and inversion of wave propagation satisfying time-reversal invariance and reciprocity in generally inhomogeneous media. The approach relies on a representation theorem of the wave equation to express the Green function between points in the interior as an integral over the response in those points due to sources on a surface surrounding the medium. Following a predictable initial computational effort, Green's functions between arbitrary points in the medium can be computed as needed using a simple cross-correlation algorithm.  相似文献   

16.
A two-dimensional boundary element model for sound propagation in a homogeneous atmosphere above non-flat terrain has been constructed. An infinite impedance plane is taken into account in the Green's function in the underlying integral equation, so that only the non-flat parts of the terrain need to be discretised in the boundary element model. This Green's function is undefined for points below the impedance plane, and therefore valleys and hollows are taken into account by coupling the exterior domain above the ground with one or several interior domains below the ground, as suggested in a recent paper [J. Sound Vibrat. 223 (1999) 355]. The resulting BEM model, which can handle arbitrary combinations of barriers and hollows, has been used for validating a ray model for various difficult configurations, including combinations of valleys and barriers.  相似文献   

17.
龚志双  王秉中  王任 《物理学报》2018,67(8):84101-084101
为快速求解亚波长间距分布的理想导体球阵列近区的时间反演电磁场,提出一种基于等效偶极子模型的解析分析方法.首先,通过分析球面波照射理想导体小球的散射场解析解发现,散射场可以近似等效为电磁偶极子辐射场的叠加.等效偶极子的强度与初始激励源的幅度成正比关系.通过建立不同小球等效偶极子矢量间的耦合方程组可以直接求解得到相应矢量的大小.然后,结合时间反演腔理论得到相应的时间反演并矢格林函数,继而得到小球阵列近区的时间反演场分布.最后,通过与数值仿真软件的计算结果进行对比,验证了方法的正确性及高效性.研究表明,时间反演技术结合近场亚波长间距小散射体加载能够实现超分辨率的场聚焦.  相似文献   

18.
A derivation and computational scheme, based on exact image theory, for the field produced by the interaction of an outgoing vector wave harmonic with an infinite-extent plane surface is presented. The method represents the angular-dependent Fresnel reflection coefficients of the surface as Laplace transforms of a spatially dependent function, which results in the reflected field appearing as a superposition of image sources located at complex points along the normal axis within the surface medium. Exact, analytical formulas are given for the transformed reflection coefficients for arbitrary surface refractive index, and an efficient computation scheme for evaluation of the scattered field coupling between a particle and the surface is presented.  相似文献   

19.
We present a new formalism for calculating the Green's function for Maxwell's equations. As our aim is to apply our formalism to light scattering at surfaces of arbitrary materials, we derive the Green's function in a surface representation. The only requirement on the material is that it should have periodicity parallel to the surface. We calculate this Green's function for light of a specific frequency and a specific incident direction and distance with respect to the surface. The material properties entering the Green's function are the reflection coefficients for plane waves at the surface. Using the close relationship between the Green's function and the density of states (DOS), we apply our method to calculate the spontaneous emission rate as a function of the distance to a material surface. The spontaneous emission rate can be calculated using Fermi's Golden Rule, which can be expressed in terms of the DOS of the optical modes available to the emitted photon. We present calculations for a finite slab of cylindrical rods, embedded in air on a square lattice. It is shown that the enhancement or suppression of spontaneous emission strongly depends on the frequency of the light. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

20.
The electromagnetic fields created by an arbitraty distribution of sources in a semibounded plasma with random Scattering of charged particles by the boundary surface are calculated. A model boundary condition is employed that ensures simultaneously preservation of the number of particles and the absence of particle flow through the boundary. The electric-susceptibility tensors, surface impedances, and coefficients of reflection of plane electromagnetic waves from a plasma half-space are found. Invariance of the distributions of s-polarized electromagnetic waves with respect to the selected model of a randomly scattering boundary is established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号