首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyethylene (a 1:1 blend of m-LLDPE and z-LLDPE) double layer silicate clay nanocomposites were prepared by melt extrusion using a twin screw extruder. Maleic anhydride grafted polyethylene (PEgMA) was used as a compatibiliser to enhance the dispersion of two organically modified monmorilonite clays (OMMT): Closite 15A (CL15) and nanofill SE 3000 (NF), and natural montmorillonite (NaMMT). The clay dispersion and morphology obtained in the extruded nanocomposite samples were fully characterised both after processing and during photo-oxidation by a number of complementary analytical techniques. The effects of the compatibiliser, the organoclay modifier (quartenary alkyl ammonium surfactant) and the clays on the behaviour of the nanocomposites during processing and under accelerated weathering conditions were investigated. X-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM), rheometry and attenuated reflectance spectroscopy (ATR-FTIR) showed that the nanocomposite structure obtained is dependent on the type of clay used, the presence or absence of a compatibiliser and the environment the samples are exposed to. The results revealed that during processing PE/clay nanocomposites are formed in the presence of the compatibiliser PEgMA giving a hybrid exfoliated and intercalated structures, while microcomposites were obtained in the absence of PEgMA; the unmodified NaMMT-containing samples showed encapsulated clay structures with limited extent of dispersion in the polymer matrix. The effect of processing on the thermal stability of the OMMT-containing polymer samples was determined by measuring the additional amount of vinyl-type unsaturation formed due to a Hoffman elimination reaction that takes place in the alkyl ammonium surfactant of the modified clay at elevated temperatures. The results indicate that OMMT is responsible for the higher levels of unsaturation found in OMMT-PE samples when compared to both the polymer control and the NaMMT-PE samples and confirms the instability of the alkyl ammonium surfactant during melt processing and its deleterious effects on the durability aspects of nanocomposite products. The photostability of the PE/clay nanocomposites under accelerated weathering conditions was monitored by following changes in their infrared signatures and mechanical properties. The rate of photo-oxidation of the compatibilised PE/PEgMA/OMMT nanocomposites was much higher than that of the PE/OMMT (in absence of PEgMA) counterparts, the polymer controls and the PE–NaMMT sample. Several factors have been observed that can explain the difference in the photo-oxidative stability of the PE/clay nanocomposites including the adverse role played by the thermal decomposition products of the alkyl ammonium surfactant, the photo-instability of PEgMA, unfavourable interactions between PEgMA and products formed in the polymer as a consequence of the degradation of the surfactant on the clay, as well as a contribution from a much higher extent of exfoliated structures, determined by TEM, formed with increasing UV-exposure times.  相似文献   

2.
通过甲基丙烯酸羟丙酯(HPMA)单体与N-(4-羧基苯基)马来酰亚胺(CPMI)单体在有机蒙脱土(OMMT)中经原位插层自由基聚合反应制备了聚合物-无机纳米复合材料.OMMT由钠基蒙脱土通过十六烷基溴化铵插层处理制备.通过XRD和TEM对复合材料结构进行了表征,证实HPMA单体和HPMA/CPMI共单体在OMMT中原位插层共聚得到的复合材料均为剥离型纳米复合材料.OMMT含量为3 wt%的PolyHPMA/OMMT纳米复合材料起始分解温度为250℃,比相应的纯聚合物的热分解温度提高30℃.随着OMMT含量的增加,热分解温度进一步提高.但在测试温度范围内,PolyHPMA/OMMT纳米复合材料均没有出现明显的玻璃化转变温度.  相似文献   

3.
In studying the morphology, molecular interactions, and physical properties of organically modified montmorillonite (OMMT) and polymer clay nanocomposites (PCNs) through molecular dynamics (MD), the construction of the molecular model of OMMT and PCN is important. Better understanding of interaction between various constituents of PCN will improve the design of polymer clay nanocomposite systems. MD is an excellent tool to study interactions, which require accurate modeling of PCN under consideration. Previously, the PCN models were constructed by different researchers on the basis of specific criteria such as minimum energy configuration, density of the polymer clay nanocomposite, and so forth. However, in this article we describe the development of models combining experimental and conventional molecular modeling to develop models, which are more representative of true intercalated PCN systems. The models were used for studying the morphological interactions and physical properties. These studies gave useful information regarding orientation of organic modifiers, area of coverage of organic modifiers over the interlayer clay surface, interaction of organic modifiers with clay in OMMT, interaction among different constituents of PCN, conformational and density change, and actual proportion of mixing of polymer with clay in PCN. We have X-ray diffraction and photoacoustic Fourier transform infrared spectroscopy to verify the model.  相似文献   

4.
Poly (3-lydroxybutyrate-co-3-hydroxyvalerate)/Organophilic montmorillonite(PHBV/OMMT) nanocomposites were prepared and the biodegradability of the PHBV/OMMT nanocomposites was studied by a cultivation degrading method in soil suspension The relationship between structure and biodegradability of PHBV/OMMT nanocomposites was investigated. The results showed that the biodegradability of PHBV/OMMT nanocomposites decreased with increasing amount of OMMT and it was related to the number of PHBV degrading microorganisms in degradation environment, the anti-microbial property of OMMT and the degree of crystallinity of the nanocomposites.  相似文献   

5.
Hydrophobic polymer (PS) nanoparticles preformed through an emulsifier-free emulsion polymerization method were successfully incorporated into a gallery of pristine sodium montmorillonite via interfacial cation exchange. The polymer beads confined between clay nanosheets were capable of (1) preventing the silicate layers from restacking and (2) maintaining the exfoliated state of clay. The increase in the abundance of surface groups promoted adsorption of the nanobeads onto the silicate surface and eventually led to the establishment of strong polymer-clay interactions. These findings suggest that, on the basis of the obtained pre-exfoliated clay masterbatch, the presence of strong polymer-clay interactions could improve the mechanical performance of nanocomposites.  相似文献   

6.
1. INTRODUCTION Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) has been recognized as apotential environment-friendly substitute for traditional plastics. The structure, mechanicalproperties and biodegradability of PHBV as biodegradable plastic have been reported by many groups [1-3]. However, PHBV presents some problems, such as high cost, slow crystallization rate, relatively difficult processing and high degree of crystallinity. Therefore, it is difficult to use PHBV widel…  相似文献   

7.
Ethylene‐vinyl acetate (EVA) nanocomposites were extruded with two types of organomodified montmorillonite (OMMT) and 1 wt% glycerol. The characterization of the nanocomposites was performed by transmission electron microscopy, X‐ray diffraction, differential scanning calorimetry, and dynamic mechanical analysis. The experimental results revealed that glycerol improved the Cloisite 30B clay exfoliation and promoted a rise in aspect ratio of the Cloisite 20A clay. In the rubbery region, the EVA/G showed a higher storage modulus than the EVA, as a result of the network of hydrogen bonds. The entanglements of long chains were more effective in the restrictions of large‐scale movements than the chemical interactions. The addition of glycerol promoted greater reinforcement and an increase in the tenacity of the nanocomposites in the glassy region. The use of glycerol for the production of EVA/OMMT nanocomposites was found to be promising. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Vinyl copolymer–clay nanocomposites were prepared by γ-irradiation-initiated radical polymerization using a mixture of styrene (St) and divinyl benzene (DVB) in the presence of reactive organic montmorillonite clay (OMMT) in methanol at room temperature. Reactive OMMT was synthesized by a cation exchange reaction of Na+-MMT and 1-[(4-ethylphenyl)methyl]-3-butyl-imidazolium chloride as a reactive organic modifier in an aqueous solution. The microstructures of the nanocomposites were confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The thermal stability was examined by thermo gravimetric analysis (TGA). As a result, the reactive OMMT was a good additive material for preparing vinyl copolymer–clay nanocomposites.  相似文献   

9.
In this study, the effect of introducing a small amount of cationic groups into the polymer main chain on the exfoliation of montmorillonite (MMT) and the physical properties of the subsequent MMT/polymer nanocomposites were investigated. As a matrix polymer, a polyurethane cationomer (PUC) containing 3 mol% of quaternary ammonium groups was synthesized and MMT/PUC nanocomposites containing various amounts of MMT were prepared by the solution intercalation method. From the WAXS and TEM analyses, it was found that the MMT layers were completely exfoliated and dispersed in the PUC matrix. The Young’s modulus of the MMT/PUC nanocomposites significantly increased with increasing MMT content, but their elongation at break and maximum stress were maintained at a level close to that of the PU only at an MMT content of 1 wt% and decreased as the content of MMT increased above this level. The phase separation of the MMT/PUC nanocomposites was retarded with increasing content of MMT, due to the strong interactions between the PUC chains and the exfoliated MMT layers. It was found that the presence of small amounts of cationic groups in the main chain of the matrix polymer was very effective in facilitating the preparation of the MMT/polymer nanocomposites.  相似文献   

10.
In this study, the solid-state shear pan-milling was employed to prepare a series of polymer/layered silicate (PLS) nanocomposites. During the process of pan-milling at ambient temperature, poly(vinyl alcohol)/organic montmorillonite (PVA/OMMT) can be effectively pulverized, resulting in coexistence of intercalated and exfoliated OMMT layers. The obtained PLS nanocomposites were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). TEM analysis indicated that OMMT dispersed homogeneously in PVA matrix and XRD results illustrated that pan-milling had an obvious effect on increase in the interlayer spacing of OMMT, and resulted in coexistence of intercalated and exfoliated OMMT layers formed. Thermal gravimetric analysis showed that thermal stability of PVA was improved owing to the incorporation of OMMT. Thermal decomposition kinetics of PVA/OMMT nanocomposites with different milling cycles of OMMT was also studied. Two types of OMMT are chosen to compare the effect of hydrophilicity of OMMT on PVA/OMMT nanocomposites.  相似文献   

11.
An account of the experiments on preparing polystyrene(PS) nanocomposites through grafting the polymer onto organophilic montmorillonite is reported.Cloisite 20A was reacted with vinyltrichlorosilane to replace the edge hydroxyl groups of the clay with a vinyl moiety.Because the reaction may liberate HC1,it was performed in the presence of sodium hydrogencarbonate to prevent the exchange of quaternary alkylammonium cations with H~+ ions.Only the silanol groups on the edge of the clay react with vinyltrichlorosilane.The radical polymerization of the product with styrene as a vinyl monomer leads to chemical grafting of PS onto the montmorillonite surface.The homopolymer formed during polymerization was separated from the grafted organoclay by Soxhlet extraction.Chemical grafting of the polymer onto Cloisite 20A was confirmed by infrared spectroscopy.The prepared nanocomposite materials and the grafted nano-particles were studied by XRD.Exfoliated nanocomposites may be obtained for 0.5 wt%-l wt%clay content.The nanocomposites were studied by thermogravimertic analysis(TGA) dynamic thermal analysis(DTA) and dynamic mechanical analysis (DMTA).  相似文献   

12.
Dialkyl imidazolium salt with better thermal stability than the commonly used dimethyldioctadecyl ammonium salt was synthesized and ion exchanged on the montmorillonite surface. Polypropylene nanocomposites with different volume fractions of the obtained organo-montmorillonite (OMMT) were prepared and the effect of the modified clay on the gas barrier and mechanical properties was studied. Wide angle X-ray diffraction (WAXRD) and transmission electron microscopy (TEM) were used to investigate the microstructure obtained. Thermal behavior of the composites analyzed by thermogravimetric analysis was observed to enhance significantly with the filler volume fraction. The gas permeation through the nanocomposite films markedly decreased with augmenting the filler volume fraction. The decrease in the gas permeation was even more significant than through the composites with ammonium treated montmorillonite. Better thermal behavior of the organic modification owing to the delayed onset of degradation hindered the interface degradation along with detrimental side reactions with polymer itself. Transmission electron microscopic studies indicated the presence of mixed morphology i.e., single layers and the tactoids of varying thicknesses in the composites. The crystallization behavior of polypropylene remained unaffected with OMMT addition. A linear increase in the tensile modulus was observed with filler volume fraction owing to partial exfoliation of the clay.  相似文献   

13.
Poly(propylene carbonate) (PPC) is a new biodegradable aliphatic polycarbonate. However, the poor thermal stability and low glass transition temperatures (Tg) have limited its applications. To improve the thermal properties of PPC, organophilic montmorillonite (OMMT) was mixed with PPC by a solution intercalation method to produce nanocomposites. An intercalated-and-flocculated structure of PPC/OMMT nanocomposites was confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The thermal and mechanical properties of PPC/OMMT nanocomposites were investigated by thermal gravimetric analysis (TGA), differential scanning calorimetric (DSC), and electronic tensile tester. Due to the nanometer-sized dispersion of layered silicate in polymer matrix, PPC/OMMT nanocomposites exhibit improved thermal and mechanical properties than pure PPC. When the OMMT content is 4 wt%, the PPC/OMMT nanocomposite shows the best thermal and mechanical properties. These results indicate that nanocomposition is an efficient and convenient method to improve the properties of PPC.  相似文献   

14.
A new combination of ionically conducting polymer–clay nanocomposites based on (PAN)8LiClO4 + x wt % montmorillonite (unmodified) clay has been prepared using the standard solution cast process. X-Ray diffraction (XRD) analysis reveals strong interaction of polymer salt complex (PS) with the montmorillonite matrix evidenced by changes in d001 spacing of the clay and enhancement in the clay gallery width on composite formation possibly due to intercalation of polymer–salt complex into nanometric clay galleries. Evidences of such an interaction among polymer–ion–clay components of the composite matrix has also been observed in the Fourier transform infrared (FTIR) spectrum results. FTIR results clearly indicated cation (Li+) coordination at nitrile (CN) site of the polymer backbone along with appearance of a shoulder suggesting strong evidence of polymer–ion interaction. Addition of clay into the PS matrix has been observed to affect ion–ion interaction resulting from ion dissociation effect at low clay loading in the PNC films. Complex impedance spectroscopy (CIS) analysis has provided a response comprising of a semicircular arc followed by a spike attributed respectively, to the bulk conduction and electrode polarization at the interfaces. Electrical transport appears to be predominantly ionic (tion = 0.99) with significant improvement in the electrical conductivity and thermal stability properties. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2577–2592, 2008  相似文献   

15.
In present study, the synthesis, characterization, and thermal properties of novel coumarin cyclic polymer poly(3-benzoyl coumarin-7-yl-methacrylate) polymer/montmorillonite based nanocomposites were performed. At the characterizations of nanomaterials FTIR, XRD, DSC and TGA techniques were used. It was determined from XRD measurements that the morphologies of nanocomposites were shifted from exfoliated type to intercalated type when the clay ratio in the coumarin polymer matrix was increased from 1 to 5% level. From DSC analysis, a partial increasing at the glass transition temperatures of nanocomposites was observed related to clay ratios. On the other hand, a positive correlation was observed between the clay ratio and thermal stability of nanomaterials from TGA analysis. Also, the increasing of decomposition temperatures of nanocomposites according to homopolymer was recorded to be 9–17°C.  相似文献   

16.
聚碳酸1,2-丙二酯/蒙脱土复合材料的制备与性能   总被引:2,自引:0,他引:2  
利用阳离子交换法,以十六烷基三甲基溴化铵(HTAB)改性钠基蒙脱土制备了有机改性蒙脱土(OMMT),OMMT的层间距达到了2nm,比普通的钠基蒙脱土增加了0.74nm.采用熔融插层法制备了插层-絮凝型PPC/OMMT复合材料,当复合材料中OMMT含量为5wt%时,复合材料的杨氏模量较纯PPC树脂大幅度提高了61.8%,同时玻璃化温度(Tg)提高了2.4℃,热分解温度提高了32.3℃.因此,OMMT对大幅度提高PPC的杨氏模量具有很大的潜力.  相似文献   

17.
PU/MOMMT纳米复合材料的制备与研究   总被引:3,自引:0,他引:3  
纳米复合材料由于其纳米尺寸效应,表面效应以及纳米粒子与基体界面间强的相互作用,具有优于相同组分常规复合材料的力学、热学等性能,引起了人们的广泛关注。用纳米材料改性聚合物,制备纳米复合材料是获得高性能高分子复合材料的重要方法。1998年以来,Pinnavaia等首先制备了聚氨酯,蒙脱土(PU/MMT)纳米复合材料,研究了有机蒙脱土在聚醚中的分散性。其后Chen等将聚羟基己内酯/蒙脱土(PCL/MMT)纳米复合材料加入到PCL和二苯基甲烷-4,4'-二异氰酸酯(MDI)合成的预聚体与1,4-丁二醇扩链反应后的溶液中,制备了PU/MMT纳米复合材料。少量PCL/MMT的引入可使复合材料的综合性能大幅提高。  相似文献   

18.
Positron annihilation lifetimes have been measured for epoxy resin/organic montmorillonite (OMMT) nanocomposites. Effects of different dispersion states of nano-layered OMMT on the positron annihilation parameters and the mechanical properties were studied. We found that the ortho-positronium (o-Ps) intensity decreased with increasing OMMT content, which indicated that the interaction between the host and nanofillers restrained the segmental motion, resulting in a decrease of the free volume. On the other hand, it is very interesting to observe a good correlation between the interfacial interaction and mechanical properties, suggesting that the dispersion states of OMMT and interfacial property between clay layers and matrix played an important role in determining the mechanical properties.  相似文献   

19.
A series of organomodified montmorillonite clays (OMMTs) such as intercalated modified montmorillonite with alkylammonium or alkylphosphonium salts (AA-MMT or AP-MMT) and double modified MMT with alkylammonium or alkylphosphonium salts and silane coupling agent (SAA-MMT or SAP-MMT) was successfully prepared in this study. The effect of the amount of nanofiller and type of organic modifier of the OMMT on poly(methyl methacrylate) (PMMA)/OMMT nanocomposites synthesized by in situ bulk polymerization was investigated. The structural and morphological characteristics of the obtained nanocomposites were studied by means of X-ray diffraction and transmission electron microscopy, indicating that exfoliation is more likely to occur in case of nanocomposites with small amounts of AA-MMT and SAA-MMT. The kinetic study results showed that the presence of AA-MMT enhances polymerization kinetics, while AP-MMT acts rather as a reaction retarder. The presence of the nanofiller and the augmentation of the OMMT content increased the thermal stability of all nanocomposites, as measured by thermogravimetric analysis, as well as their average molecular weight measured by gel permeation chromatography. Measurements of the tensile properties revealed that the Young’s modulus increased for all nanocomposites along with a decrease of the ultimate strain, while the tensile strength varied regardless of the extent of exfoliation.  相似文献   

20.
通过原位聚合法制备了本质阻燃聚苯乙烯[P(St-co-AEPPA)]/有机改性蒙脱土(OMMT)纳米复合物[P(St-co-AEPPA)/OMMT], 并用普通聚苯乙烯/有机改性蒙脱土(PS/OMMT)复合物作为对比实验, 研究了含磷、氮单体丙烯酸羟乙基-苯氧基-二乙基磷酰胺(AEPPA)和OMMT等添加物对本质阻燃聚苯乙烯性能的影响.用X射线衍射仪(XRD)和透射电子显微镜(TEM)分析了复合材料的结构与形貌, 并对OMMT在基体中的分散机理进行了讨论.用差示扫描量热仪(DSC)、热重分析(TGA)和微型量热仪(MCC)研究了材料的热性能和燃烧性能.结果表明, AEPPA和OMMT能够显著提高基体的热稳定性和阻燃性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号