首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rigorous analysis of non-Newtonian boundary layer flow of power-law fluids over a stretching sheet is presented. First, a systematic framework for treatment of sheet velocities of the form U(x)=Cxm is provided. By means of an exact similarity transformation, the non-linear boundary layer momentum equation transforms into an ordinary differential equation with m and the power-law index n as the only parameters. Earlier investigations of a continuously moving surface (m=0) and a linearly stretched sheet (m=1) are recovered as special cases.For the particular parameter value m=1, i.e. linear stretching, numerical solutions covering the parameter range 0.1n2.0 are presented. Particular attention is paid to the most shear-thinning fluids, which exhibit a challenging two-layer structure. Contrary to earlier observations which showed a monotonic decrease of the sheet velocity gradient -f(0) with n, the present results exhibit a local minimum of -f(0) close to n=1.77. Finally, a series expansion in (n-1) is proved to give good estimates of -f(0) both for shear-thinning and shear-thickening fluids.  相似文献   

2.
Summary We study the stability of thin films of fluids subject to gravity along inclined planes, obeying a power-law constitutive relation of the Ostwald-de Waele type. A first analysis, in which the inertia terms are ignored, shows such flow to be stable against small, linear perturbations; a second analysis, in which the inertia terms are included, proves that there are stable and unstable regimes that are separated by a critical Ostwald-de Waele number O. Numerical computations for selected values of O demonstrate the decay and growth rate behavior of some finite amplitude disturbances. Received 12 May 1997; accepted for publication 23 July 1997  相似文献   

3.
A modified power-law fluid of second grade is considered. The model is a combination of power-law and second grade fluid in which the fluid may exhibit normal stresses, shear thinning or shear thickening behaviors. The equations of motion are derived for two dimensional incompressible flows, and from which the boundary layer equations are derived. Symmetries of the boundary layer equations are found by using Lie group theory, and then group classification with respect to power-law index is performed. By using one of the symmetries, namely the scaling symmetry, the partial differential system is transformed into an ordinary differential system, which is numerically integrated under the classical boundary layer conditions. Effects of power-law index and second grade coefficient on the boundary layers are shown and solutions are contrasted with the usual second grade fluid solutions.  相似文献   

4.
《Comptes Rendus Mecanique》2017,345(2):169-176
Boundary-layer solutions to Banks' problem for the flow induced by power-law stretching of a plate are obtained for two generalizations that include arbitrary transverse plate shearing motion. In one extension an arbitrary transverse shearing motion is the product of the power-law stretching. In the other extension the streamwise stretching coordinate is added to an arbitrary transverse shearing and together raised to the power of stretching. In addition we find that Banks' power law stretching may be accompanied by orthogonal power-law shear. In all cases, the original boundary-value problem of Banks [1] is recovered. Results are illustrated with velocity profiles both at the plate and at fixed height in the fluid above the plate.  相似文献   

5.
In this paper we study the problem of rectilinear shear of a slab of transversely isotropic incompressible non-linearly elastic material. In particular, the material under consideration is a base neo-Hookean model augmented with a function that accounts for the existence of a unidirectional reinforcement. The slab is of infinite length in two dimensions and finite thickness in the other one and is clamped to two rigid plates. Closed form analytic solutions are found for this problem. It is shown that, depending on the reinforcement strength and the fiber orientation in the undeformed configuration, weak solutions, i.e. solutions for which the smoothness required by the differential equations is relaxed, are to be expected. These solutions give rise to fiber kinking. It is shown that: (i) both sides of the kink involve fiber contraction; (ii) a suitable intermediate deformation between the two conjoined kink deformation states is non-elliptic.  相似文献   

6.
The problem of a steady forced convection thermal boundary-layer driven by a power-law shear is investigated. The search for similarity solutions reduces the problem to a couple of ordinary differential equations containing three parameters: the exponent of the decaying exterior velocity profile, the exponent of the power-law prescribing the thermal condition on the wall and Prandtl number. The effects of these parameters on the existence and form of similarity solution are investigated and the functional dependence of the local Nusselt number on these parameters is reported and discussed. An analysis of the assumptions usually accepted to derive similarity solutions is also reported in order to show the range of values of the exterior velocity power-law exponent for which such solutions may exist.  相似文献   

7.
An analytical technique, namely the homotopy analysis method (HAM), is used to solve problems of nonlinear oscillations with parametric excitation. Unlike perturbation methods, HAM is not dependent on any small physical parameters at all, and thus valid for both weakly and strongly nonlinear problems. In addition, HAM is different from all other analytic techniques in providing a simple way to adjust and control convergence region of the series solution by means of an auxiliary parameter h. In the present paper, a periodic analytic approximations for nonlinear oscillations with parametric excitation are obtained by using HAM, and the results are validated by numerical simulations.  相似文献   

8.
Newtonian fluid flow in two- and three-dimensional cavities with a moving wall has been studied extensively in a number of previous works. However, relatively a fewer number of studies have considered the motion of non-Newtonian fluids such as shear thinning and shear thickening power law fluids. In this paper, we have simulated the three-dimensional, non-Newtonian flow of a power law fluid in a cubic cavity driven by shear from the top wall. We have used an in-house developed fractional step code, implemented on a Graphics Processor Unit. Three Reynolds numbers have been studied with power law index set to 0.5, 1.0 and 1.5. The flow patterns, viscosity distributions and velocity profiles are presented for Reynolds numbers of 100, 400 and 1000. All three Reynolds numbers are found to yield steady state flows. Tabulated values of velocity are given for the nine cases studied, including the Newtonian cases.  相似文献   

9.
In this paper, the steady unidirectional flow of a rivulet, driven by interfacial shear and gravity, is considered. When the aspect ratio of the rivulet is small the pressure, velocity, flux and cross-sectional shape are determined in the form of asymptotic power series. The problem is also solved numerically without the small aspect ratio assumption. The analytical and numerical results are compared to test the range of validity of the asymptotics. Both sets of results are also compared with existing experimental data. Finally, the rivulet energy is considered to determine whether it is energetically favourable for a rivulet to split.  相似文献   

10.
TAKHAR  H.S.  NATH  G. 《Meccanica》1997,32(2):157-163
The unsteady laminar incompressible boundary layer flow of an electricallyconducting fluid in the stagnation region of two-dimensional and axisymmetricbodies with an applied magnetic field has been studied. The boundary layerequations which are parabolic partial differential equations with threeindependent variables have been reduced to a system of ordinary differential equations by using suitable transformations and then solved numerically using a shooting method. Here, we have obtained new solutions which are solutions of both the boundary layer and Navier-Stokes equations.  相似文献   

11.
Wetting-front movement can be impaired whenever the flow region includes boundaries such as the soil surface, seepage faces, planes of symmetry, or actual layers that are effectively impermeable, such as heavy clays or coarse materials below the water-entry pressure. An approximate analytical solution for interaction of flow from a line source with a parallel plane, impervious layer is derived. The solution ignores gravity and assumes a particular diffusivity that is related to the constant flow rate. It is exact until interaction begins, and provides an accurate approximation for short times thereafter. It can therefore be used to test the accuracy of numerical solutions of the flow equation, which can then be used with confidence for later times when the analytical approximation breaks down, for instance because gravity is ignored. A finite difference solution was tested in this way for both gradual and steep wetting fronts. Agreement between the two solutions was excellent for the gradual front, with the analytical approximation only slightly in error at later times. Numerical errors at the steep front were much greater; an accurate solution needed a finer spatial grid and a restart from the exact analytical values at the beginning of the interaction. The analytical approximation, though not as accurate as for the gradual front, was still good.  相似文献   

12.
Chantal Staquet 《Meccanica》1994,29(4):489-505
A numerical study is conducted to find out the conditions of occurrence of a secondary Kelvin-Helmholtz instability in the thin layers (referred to as baroclinic layers) that form in a stably-stratified shear layer. For this purpose, three high resolution calculations of a moderately stratified shear layer have been carried out, at a fixed Reynolds number. The wavelength of the initial perturbation is progressively increased, starting from the fundamental wavelength predicted by linear stability theory up to twice this fundamental wavelength. The baroclinic layer of the flow is shown to lengthen and destabilize progressively from one calculation to the other, eventually bearing a secondary Kelvin-Helmholtz instability. The structure and dynamics of the baroclinic layers of the three calculations are examined in the frame of a theoretical model proposed by Corcos and Sherman ([1]). An excellent agreement with the predictions of this model have been found. We next show that the stability of the layer is controlled by the large-scale Kelvin-Helmholtz vortex, via the strain field that it induces in the stagnation point region of the layer. A consequence of this study is that secondary Kelvin-Helmholtz instabilities are fostered by the pairing of primary Kelvin-Helmholtz vortices in a strongly-stratified shear layer.
Sommario E stato condotto uno studio numerico per trovare le condizioni in cui insorge una instabilità secondaria di Kelvin-Helmholtz negli strati sottili che si formano in uno strato di scorrimento stabilmente stratificato. A questo scopo sono state effettuate tre simulazioni ad alta risoluzione a fissato numero di Reynolds e stratificazione bassa. La lunghezza d'onda della perturbazione iniziale è stata progressivamente aumentata dalla lunghezza fondamentale predetta dalla teoria lineare della stabilità fino a due volte questa stessa lunghezza. È stato osservato che da una simulazione all'altra lo strato baroclino del flusso si allunga e si destabilizza progressivamente, generando eventualmente un'instabilità di Kelvin-Helmholtz secondaria. Utilizzando il modello teorico proposto da Corcos e Sherman (1976), per le tre simulazioni sono state analizzate la struttura e la dinamica dello strato baroclino. È stato trovato un accordo eccellente con le predizioni di questo modello. È stato in seguito mostrato che la stabilità dello strato è controllato dai vortici di Kelvin-Helmholtz di larga scala attraverso il campo di deformazione che inducono nella regione del punto di ristagno dello strato. Una conseguenza di questo studio è che le instabilità secondarie di Kelvin-Helmholtz sono forzate dall'accoppiamento dei vortici primari in uno strato di scorrimento fortemente stratificato.
  相似文献   

13.
Asymptotic properties of the neutral stability curves for a linear boundary eigenvalue problem which models the wrinkling instability of an annular thin film in tension are considered. The film is subjected to imposed radial displacement fields on its inner and outer boundaries and, when these loads are sufficiently large, the film is susceptible to wrinkling. The critical values at which this onset occurs are dictated by the solution of a fourth-order ordinary differential eigensystem whose eigenvalue λ is a function of μ(?1), a quantity inversely proportional to the non-dimensional bending stiffness of the film, and n, the number of half-waves of the wrinkling pattern that sets in around the annular domain. Previously, Coman and Haughton [2006. Localised wrinkling instabilities in radially stretched annular thin films. Acta Mech. 185, 179-200] employed the compound matrix method together with a WKB technique to characterise the form of λ(μ,n) which essentially is related to a turning point in a reduced eigenproblem. The asymptotic analysis conducted therein pertained to the case when this turning point was not too close to the inner edge of the annulus. However, in the thin film limit μ→∞, the wrinkling load and the preferred instability mode are given by a modified eigenvalue problem that involves a turning point asymptotically close to the inner rim. Here WKB and boundary-layer asymptotic methods are used to examine these issues and comparisons with direct numerical simulations made.  相似文献   

14.
A study is made of the unsteady flow engendered in a second-order incompressible, rotating fluid by an infinite porous plate exhibiting non-torsional oscillation of a given frequency. The porous character of the plate and the non-Newtonian effect of the fluid increase the order of the partial differential equation (it increases up to third order). The solution of the initial value problem is obtained by the method of Laplace transform. The effect of material parameters on the flow is given explicitly and several limiting cases are deduced. It is found that a non-Newtonian effect is present in the velocity field for both the unsteady and steady-state cases. Once again for a second-order fluid, it is also found that except for the resonant case the asymptotic steady solution exists for blowing. Furthermore, the structure of the associated boundary layers is determined.  相似文献   

15.
The structure of the wave field given by an exact solution of the linearized problem of radiation of three-dimensional periodic internal waves in a continuously stratified viscous fluid is analyzed numerically. The waves are generated by a piston, i.e., a disk lying on a fixed horizontal plane and oscillating in the vertical direction. The flow fields and the wave displacements are compared with the data of shadow visualization and measurements of the wave amplitudes made using a contact sensor. The calculated and observed wave patterns are in satisfactory agreement and the displacement distributions coincide correct to a fitting coefficient 0.7 < K < 1.1 characterizing the role of the nonlinear effects and other factors neglected in this model.  相似文献   

16.
In this paper the conditions for the existence of self-similar solutions of the equations governing unsteady flows through a porous medium are presented and discussed. The first two sections deal with the case of non-Newtonian fluids of power-law behavior; the third section analyzes the case of non-Darcy gas flows. The boundary and initial conditions occuring currently in a large class of fluid mechanics problems, of practical interest in engineering, are considered.  相似文献   

17.
The problem of the decay of an arbitrary discontinuity for the equations describing plane-parallel shear flows of an ideal fluid in a narrow channel is considered. The class of particular solutions corresponding to fluid flows with piecewise constant vorticity is studied. In this class, the existence of self-similar solutions describing all possible unsteady wave configurations resulting from the nonlinear interaction of the specified shear flows is established. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 6, pp. 34–47, November–December, 2006.  相似文献   

18.
Merkin  J. H.  Pop  I. 《Transport in Porous Media》1997,29(3):355-364
The mixed convection boundary-layer flow on a horizontal impermeable surface embedded in a saturated porous medium and driven by a local heat source is considered. Similarity solutions are obtained for specific outer flow variations and these are shown to have a solution only for parameter values greater than some critical value. When this is not the case the solution develops a singularity at a finite distance from the leading edge. The nature of this singularity is also discussed.  相似文献   

19.
This paper studies the problem of pairs of horizontal shear flows of weakly stratified fluids with identical mass, momentum, and energy fluxes. The initial problem is reduced to a system of two scalar equations for the main- and perturbed-flow parameters by using bifurcation methods. The existence conditions for nontrivial branches of conjugate flows close to the main flow are investigated. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 2, pp. 79–88, March–April, 2009.  相似文献   

20.
In this paper the analog equation method (AEM), a BEM-based method, is employed for the nonlinear analysis of a Timoshenko beam with simply or multiply connected variable cross section undergoing large deflections under general boundary conditions. The beam is subjected in an arbitrarily concentrated or distributed variable axial loading, while the shear loading is applied at the shear center of the cross section, avoiding in this way the induction of a twisting moment. To account for shear deformations, the concept of shear deformation coefficients is used. Five boundary value problems are formulated with respect to the transverse displacements, the axial displacement and to two stress functions and solved using the AEM. Application of the boundary element technique yields a system of nonlinear equations from which the transverse and axial displacements are computed by an iterative process. The evaluation of the shear deformation coefficients is accomplished from the aforementioned stress functions using only boundary integration. Numerical examples with great practical interest are worked out to illustrate the efficiency, the accuracy and the range of applications of the developed method. The influence of the shear deformation effect is remarkable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号