首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bi- and trifunctional periodic mesoporous organosilicas (PMOs) with phenylene, thiophene, and ethane bridging groups were synthesized using 1,2-bis(triethoxysilyl)ethane (BTEE), 1,4-bis(triethoxysilyl)benzene (BTEB), and 2,5-bis(triethoxysilyl)thiophene (BTET) organosilica precursors and a poly(ethylene oxide)-poly(D,L-lactic acid-co-glycolic acid)-poly(ethylene oxide) (PEO-PLGA-PEO) triblock copolymer template under low acidic conditions. The PMO samples with different concentrations of organic bridging groups were obtained in the form of spherical particles having average diameters of 2-3 mum and 2D hexagonal (p6m) mesostructure with pore diameters of 7.3-8.4 nm. The particle morphology and chemistry of pore walls were tailored using different mixtures of organosilica precursors. Adsorption and structural properties of the aforementioned PMOs have been studied by nitrogen adsorption and small-angle X-ray scattering, whereas their framework chemistry was quantitatively analyzed by solid-state 13C and 29Si MAS NMR.  相似文献   

2.
The first synthesis of a chiral periodic mesoporous organosilica (PMO) carrying benzylic ether bridging groups is reported. By hydrolysis and condensation of the new designed chiral organosilica precursor 1,4-bis(triethoxysilyl)-2-(1-methoxyethyl)benzene (BTEMEB) in the presence of the non-ionic oligomeric surfactant Brij 76 as supramolecular structure-directing agent under acidic conditions, an ordered mesoporous chiral benzylic ether-bridged hybrid material with a high specific surface area was obtained. The chiral PMO precursor was synthesized in a four-step reaction from 1,4-dibromobenzene as the starting compound. The evidence for the presence of the chiral units in the organosilica precursor as well as inside the PMO material is provided by optical activity measurements.  相似文献   

3.
Sun  Zechun  Wang  Yiran  Zhang  Zhiruo  Zhu  Fengxia  Zhao  Pusu  Li  Guisheng  Shao  Fengfeng  Rui  Jiahui 《Research on Chemical Intermediates》2019,45(5):3107-3121

An imine-functionalized mesoporous solid base catalyst (BA@BE-PMO) was prepared by template agent-directed self-assembly condensation of bis[3-(triethoxysilyl)propyl]amine and 1,2-bis(triethoxysilyl)ethane in acid solution. The imine groups with catalytic activity were integrally embedded into mesopore walls of as-made BA@BE-PMO. In Knoevenagel reactions in aqueous medium, the BA@BE-PMO catalyst exhibited better catalytic activity than imine-functionalized SBA-15 catalyst synthesized using the traditional co-condensation method, which can be attributed to the pore surface with strong hydrophobicity originating from –CH2CH2– group fragments incorporated into pore walls. The strong hydrophobicity of the surface facilitates adsorption and diffusion of organic compounds on the catalyst surface in reactions in aqueous medium. Moreover, it exhibited comparable catalytic activity to dipropylamine homogeneous base catalyst because of the uniform dispersion of imine group active sites. The BA@BE-PMO catalyst could also be recovered and reused in up to five runs without significant loss in activity without any negative environmental impact.

  相似文献   

4.
分别以1,2-双(三乙氧基硅基)乙烷(BTESE)、1,2-双(三乙氧基硅基)乙烯(BTESEE)和苯基三乙氧基硅烷(PTES)为硅源, 通过一步法直接合成有机硅骨架修饰的磷酸铝分子筛VPI-5. 系统考察了各反应参数对产物结构与性质的影响, 并对产物的结构进行了表征. 表征结果表明, 有机基团通过硅原子被引入到分子筛骨架中. 有机基团的引入增加了分子筛的亲油性, 并且不同的有机基团对分子筛的亲油性的提高程度不同.  相似文献   

5.
Interaction of PLGA nanoparticles with human blood constituents   总被引:4,自引:0,他引:4  
When nanoparticles are injected into the blood for drug delivery or drug detoxification, detrimental interaction of these particles with blood constituents must be avoided. In previous studies, the adsorption of albumin immunoglobulin G, and fibrinogen from blood plasma to a model hydrophobic polymer like polystyrene was investigated as was decreasing surface hydrophobicity, which quantitatively leads to decreasing amounts of adsorbed proteins on latex particles. However, the uptake of other blood constituents, such as inorganic blood electrolytes, by particles and the dispersion/coagulation characteristics of these particles in the blood stream have not been fully studied. Most importantly, the effect s of these particles on blood coagulation and hemolysis are not well known. In the present study, the poly(lactide-co-glycolide) acid(PLGA) nanoparticles were synthesized by using nanoprecipitation. The uptake of blood electrolytes from simulated blood fluid (SBF) and the stability (dispersion/aggregation) of nanoparticles in SBF was examined by using different loading amounts of PLGA and different contact time between PLGA nanoparticles and SBF. The interaction of particles with the organic components of blood was also studied by using the measurement of red blood cell hemolysis and blood clotting with raw PLGA, surfactant modified PLGA, and PEGylated PLGA.  相似文献   

6.
Adsorption characteristics of organosilica based mesoporous materials   总被引:1,自引:0,他引:1  
Hybrid organosilica mesoporous materials with pores of ordered three-dimensional hexagonal structure were prepared by the hydrolysis and co-condensation of 1,2-bis(triethoxysilyl)ethane with various concentrations of a surfactant as structure directing agents. The materials had high pore volume of 1-1.5 mL/g and high surface area from 1057 to 1445 m(2)/g. Adsorption measurement and adsorption calorimetry revealed that the prepared materials exhibited high hydrophobicity and high affinity toward nonpolar organic vapor such as n-hexane. The dynamic adsorption properties of the materials for n-hexane in the presence of water vapor showed that these hybrid organosilica materials preferentially adsorbed n-hexane vapor and were stable in the presence of water compared to the siliceous MCM48.  相似文献   

7.
The sol–gel technique can be used as a new method for loading an anticancer drug (doxorubicin hydrochloride) within a silica xerogel matrix. Procedure to obtain a doxorubicin-loaded silica xerogel was specially developed to avoid decomposition of doxorubicin and to facilitate the formation of narrow-pore structure. The main purpose of this paper was to examine molecular and macroscopic structural changes in the novel silica material under the desired conditions of in vitro doxorubicin release. Simulated body fluid (SBF, Kokubo solution) at 37 °C with ion concentrations nearly equal to those of human blood plasma (pH 7.4) was used for in vitro evaluation. The release test of doxorubicin was performed under static conditions with a regular replacement of SBF. The characterization of silica xerogel was performed by using SEM, BET, IR, and nitrogen gas adsorption/desorption measurements. The thermal decomposition behavior of this material was also reported.  相似文献   

8.
A new series of carbamothioic acid‐containing periodic mesoporous organosilica (PMO) materials has been synthesized by a direct cocondensation method, in which an organosilica precursor N,S‐bis[3‐(triethoxysilyl)propyl]carbamothioic acid (MI) is treated with tetraethyl orthosilicate (TEOS), and the nonionic surfactant Pluronic 123 (P123) is used as a template under acidic conditions in the presence of inorganic additives. Moreover, the synthesis of the PMO material consisting of the MI precursor without TEOS has been realized. These novel PMO materials have large surface areas, well‐ordered mesoporous structures, hollow fiberlike morphologies, and thick walls. They are also structurally well‐ordered with a high organosilica precursor content, and the carbamothioic acid groups are thermally stable up to 250 °C. Furthermore, the organosilica materials exhibit hydrothermal stability in basic solution.  相似文献   

9.
Water‐medium organic reactions were studied over periodic mesoporous silica (PMO) containing Pd(II) organometallic complex. This heterogeneous catalyst was achieved by Pd(II) compound coordinated with the PPh2‐ligand onto the pore surface of phenylene‐bridged PMO support. This catalyst displayed ordered mesoporous channels, which ensured the high dispersion of Pd(II) active sites and the convenient diffusion of reactant molecules into the pore channels. Meanwhile, the phenyl group in the pore wall of PMO could enhance the surface hydrophobicity which promoted the adsorption of organic reactant molecules on the catalyst in aqueous environment. As a result, this elaborated catalyst exhibited comparable activity and selectivity with the corresponding PdCl2(PPh3)2 homogeneous catalyst in the water‐medium organic reactions, and could be used repeatedly, showing a good potential in industrial applications. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
This work describes a tunable blood compatibility of zwitterionic poly(sulfobetaine methacrylate) (polySBMA) polymers at a wide range of high molecular weights from 50 kDa to 300 kDa controlled with a similar polydispersity via homogeneous free-radical polymerization. The control of molecular weights of polySBMA highly regulates the zwitterionic nonfouling nature to resist the adsorption of plasma proteins, the coagulant of human plasma, and the hemolysis of red blood cells. In this study, the upper critical solution temperatures (UCSTs) and hydrodynamic size of prepared polymers are determined to illustrate the correlations between intermolecular zwitterionic associations and blood compatibility of polySBMA suspension in human blood. The polySBMA exhibited clear shifts of UCSTs in the stimuli-responsive control of solution pH and ionic strength, which were strongly associated with the molecular weights of the prepared polymers. Plasma-protein adsorption onto the polySBMA polymers from single-protein solutions and the complex medium of 100% human plasma were measured by dynamic light scattering to determine the nonfouling stability of polySBMA suspension. It was found that the nonfouling nature as well as hydration capability of polySBMA can be effectively controlled via regulated molecular weights of zwitterionic polymers. This work shows that the polySBMA polymer with an optimized molecular weight of about 135 kDa at physiologic temperature is presented high hydration capability to function the best nonfouling character of anticoagulant activity and antihemolytic activity in human blood. The excellent blood compatibility of zwitterionic polySBMA along with their stimuli-responsive phase behavior in aqueous solution suggests their potential for use in blood-contacting targeted delivery and diagnostic applications.  相似文献   

11.
In situ conformational analysis of fibrinogen adsorbed on Si surfaces   总被引:5,自引:0,他引:5  
Fibrinogen is a major plasma protein. Previous investigations of structural changes of fibrinogen due to adsorption are mostly based on indirect evidence after its desorption, whereas our measurements were performed on fibrinogen in its adsorbed state. Specific enzyme-linked immunosorption experiments showed that the amount of adsorbed fibrinogen increased as the surface became more hydrophobic. Atomic force microscopy (AFM) investigations revealed the trinodular shape of fibrinogen molecules adsorbed on hydrophilic surfaces, whereas all of the molecules appeared globular on hydrophobic surfaces. The distribution of secondary structures in adsorbed fibrinogen was quantified by in situ Fourier-transform infrared (FTIR) analysis. Substrates of identical chemical bulk composition but different surface hydrophobicity permit direct comparison among them. Adsorption properties of fibrinogen are different for each degree of hydrophobicity. Although there is some increase of turn structure and decrease of β-sheet structure, the secondary structure of adsorbed fibrinogen on hydrophilic surface turned out to be rather similar to that of the protein in solution phase with a major -helix content. Hydrophilic surfaces exhibit superior blood compatibility as required for medical applications.  相似文献   

12.
利用非水溶剂快速挥发的方法,以三嵌段共聚物P123等作为结构导向剂,双三乙氧硅基乙烷作为硅源,合成出一系列大孔径(>4nm)、高有序度、具有二维六角结构并且墙壁中含双亚甲基的介孔有机氧化硅(PMO)材料,并通过XRD、TEM、N2吸附-脱附、29SiNMR和SEM等方法对材料进行了表征.  相似文献   

13.
Mesoporous organosilica-porphyrin composites were obtained by entrapment of 5,10,15,20-tetraphenylporphyrin (TPP) and 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin (TMPyP) into three polysilsesquioxanes prepared by the sol-gel method from 1,2-bis(triethoxysilyl)ethane, 1,6-bis(triethoxysilyl)hexane, and 1,8-bis(triethoxysilyl)octane. The materials were characterised by their texture and optical properties (fluorescence and absorbance) and by light-induced antimicrobial activity against E. coli BL21(DE3) (pET16bDsRed) strain.  相似文献   

14.
Hybrid mesoporous periodic organosilicas (Ph‐PMOs) with phenylene moieties embedded inside the silica matrix were used as a heterogeneous catalyst for the Ullmann coupling reaction in water. XRD, N2 sorption, TEM, and solid‐state NMR spectroscopy reveal that mesoporous Ph‐PMO supports and Pd/Ph‐PMO catalysts have highly ordered 2D hexagonal mesostructures and covalently bonded organic–inorganic (all Si atoms bonded with carbon) hybrid frameworks. In the Ullmann coupling reaction of iodobenzene in water, the yield of biphenyl was 94 %, 34 %, 74 % and for palladium‐supported Ph‐PMO, pure silica (MCM‐41), and phenyl‐group‐modified Ph‐MCM‐41 catalysts, respectively. The selectivity toward biphenyl reached 91 % for the coupling of boromobenzene on the Pd/Ph‐PMO catalyst. This value is much higher than that for Pd/Ph‐MCM‐41 (19 %) and Pd/MCM‐41 (0 %), although the conversion of bromobenzene for these two catalysts is similar to that for Pd/Ph‐PMO. The large difference in selectivity can be attributed to surface hydrophobicity, which was evaluated by the adsorption isotherms of water and toluene. Ph‐PMO has the most hydrophobic surface, and in turn selectively adsorbs the reactant haloaryls from aqueous solution. Water transfer inside the mesochannels is thus restricted, and the coupling reaction of bromobenzene is improved.  相似文献   

15.
This study systematically investigates periodic mesoporous organosilicas (PMOs) with controlled helical and concentric circular (CC) pore architectures prepared through a basic‐catalyzed sol–gel process by using an achiral cationic surfactant trimethyloctadecylammonium bromide (C18TAB) as a structure‐directing agent, perfluorooctanoic acid (PFOA) as an additive, and 1,2‐bis(triethoxysilyl)ethane (BTEE) as a hybrid silica precursor. By increasing the weight ratio of PFOA/C18TAB, a pore architecture transition of PMO materials from hexagonal‐arrayed, straight longitudinal channels to helical and CC mesostructures is achieved; such a transition has not been observed before in PMO materials. Our discovery is helpful in understanding the supramolecular cooperative assembly of hybrid materials and their structural and morphological evolution, which are important in the future applications of PMO materials.  相似文献   

16.
Hydroxyapatite composites are the main biomaterials used for metal implant coatings. Their in vitro study is very important. That is why their behavior was monitored in simulated body fluid (SBF), which is a solution with ion concentrations and pH value similar to those of human blood plasma. Silica, chitosan and gelatin-doped hydroxyapatite-based biomaterials were studied in SBF; the samples were characterized pre-, during and post-SBF immersion using infra-red, scanning and transmission electron spectroscopy and X-ray diffraction methods. The solubility of materials in SBF was determined, and the variation of Ca2+ and phosphorus concentration was also recorded during SBF experiments. The results were compared and their in vitro biological activity was determined.   相似文献   

17.
The reversibility of the first stage of adsorption of zwitterionic cytochrome c on a hydrophobic quartz surface was investigated using time‐resolved slab optical waveguide (SOWG) absorption spectroscopy. Using a novel prism‐free broadband coupling approach, absorbance data were collected successfully at a 50 ms time interval during the first few seconds after solution–surface contact. Near the isoelectric point where the cytochrome c molecules possess a net charge of zero and hence cannot be influenced by an electric field, the speed at which adsorption proceeded was found to be dependent on cytochrome c concentration as well as on surface hydrophobicity. It was also observed that the degree of protein adsorption increased as the surface hydrophobicity was increased. Within 6 s the adsorption process appeared to be reversible, as revealed by extremely low chi‐squared values when the absorbance data were fitted into the reversible Langmuir‐type kinetic model. The standard Gibbs free energy of adsorption was also calculated from the absorbance data. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
The capacity of a periodic mesoporous organosilica (PMO) to adsorb the aromatic compounds benzene, toluene, o-, and p-xylenes (BTX), which are usually present in produced waters, was investigated under both column and batch processes. The PMO was synthesized by condensation of 1,4 bis(triethoxisilyl)benzene (BTEB) under acidic conditions by using structure-directing agent (SDA) Pluronic P123 in the presence of KCl. Thermogravimetric analysis showed that the presence of the surfactant decreases the thermal stability of the PMO. The small-angle X-ray diffraction pattern, as well as the nitrogen adsorption/desorption isotherm measurements, revealed that the synthesized material has a crystalline structure, with hexagonally-ordered cylindrical mesopores. The adsorption kinetics study indicated an adsorption equilibrium time of 50 min and also showed that the data best fitted the pseudo-first order kinetic model. The intraparticle diffusion model was also tested and pointed to the occurrence of such process in all cases. Both Langmuir and Temkin models best represented the adsorption isotherms of toluene; Langmuir and Redlich-Peterson models best represented the data obtained for the other compounds. Adsorption capacity decreases in the order benzene>o-xylene>p-xylene>toluene. Satisfactory results were observed in the application of the synthesized PMO for the removal of BTX from aqueous solution.  相似文献   

19.
Adsorption of mycotoxins by organozeolites   总被引:3,自引:0,他引:3  
Adsorption of zearalenone (ZEN), ochratoxin A (OCHRA) and aflatoxin B1 (AFB1) on natural zeolite, clinoptilolite, modified with different amounts of octadecyldimethylbenzyl ammonium (ODMBA) ions was investigated. Results showed that adsorption of hydrophobic ionizable ZEN on unmodified zeolite tuff was very low and that adsorption on organozeolites increased with increasing hydrophobicity of the zeolitic surface. The adsorption was independent of the form of ZEN in solution and the solution pH, indicating that hydrophobic interactions with ODMBA are responsible for ZEN adsorption. Adsorption of low polar ionizable OCHRA on organozeolites also increased with increasing hydrophobicity of the zeolitic surface, however, OCHRA showed moderate adsorption on unmodified zeolitic tuff at pH 3. OCHRA adsorption on unmodified zeolite as well as on lower surface coverage of organozeolite was dependent on the form of OCHRA in solution; there was a decrease of adsorption at high pH, where OCHRA is in the anionic form. It indicated that at acidic pH, low surface coverage allows some combination of hydrophobic interaction with ODMBA and interactions with the surface of the zeolite. At higher surface coverage, the OCHRA adsorption was higher and practically independent of pH, indicating that the hydrophobic interactions of OCHRA with ODMBA are responsible for its adsorption. Nonionizable low polar AFB1 had a high affinity for the unmodified zeolitic tuff and the adsorption of AFB1 was greatly reduced for organozeolites, indicating that AFB1 does not have high tendency for hydrophobic interactions with ODMBA. pH dependence of AFB1 adsorption, while AFB1 has the same form at all pHs, demonstrated that the surface modification of the zeolite depends on pH and that these modifications have influence on its adsorption. The calculated dipole moments of neutral mycotoxin molecules: AFB1-9.5D, OCHRA-6.9D and ZEN-2.2D are in qualitative agreement with adsorption experimental data.  相似文献   

20.
In this article, we report the synthesis of methylene-bridged periodic mesoporous organosilicas (PMOs) of the SBA-15 type. The materials were characterized by SAXS, BET, NMR, FESEM, and TEM. It was found that the synthesis of methylene-bridged SBA-15 PMOs requires more rigorous conditions than that of SBA-15 PMOs bearing organic bridges other than methylene. A mild acidic environment, which slows down the hydrolysis and condensation rates of the precursor, with the assistance of a salt, which enhances precursor-template interaction, should be used to synthesize high-quality large-pore methylene-bridged PMOs. We attributed this to the fast hydrolysis and condensation rates and the rigid backbone of precursor 1,2-bis(triethoxysilyl)methylene. By examining and comparing the synthesis of three large-pore PMOs with different bridges, we concluded that the inductive, bridging, and conformation effects of the organic bridging group play an important role in the synthesis of large-pore PMO materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号