首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A computer-controlled flow-injection system is described for the assay of D-glucose and L-lactic acid in undiluted plasma. Glucose or lactate is quantified by coupling an immobilized glucose oxidase or lactate oxidase membrane with an amperometric sensor; the hydrogen peroxide generated is directly related to the concentration of glucose or lactate. The linear range is 0–40 mM and 0–10 mM for glucose and lactic acid, respectively. The sample frequency is 60 h?1 with a standard deviation of less than 1.5%. Correlation with the results for blood plasma obtained by routine clinical analyzers was good for both glucose and lactic acid.  相似文献   

2.
Cholesterol oxidase is immobilized in electrode-supported lipid bilayer membranes. Platinum electrodes are initially modified with a self-assembled monolayer of thiolipid. A vesicle fusion method is used to deposit an outer leaflet of phospholipids onto the thiolipid monolayer forming a thiolipid/lipid bilayer membrane on the electrode surface. Cholesterol oxidase spontaneously inserts into the electrode-supported lipid bilayer membrane from solution and is consequently immobilized to the electrode surface. Cholesterol partitions into the membrane from buffer solutions containing cyclodextrin. Cholesterol oxidase catalyzes the oxidation of cholesterol by molecular oxygen, forming hydrogen peroxide as a product. Amperometric detection of hydrogen peroxide for continuous solution flow experiments are presented, where flow was alternated between cholesterol solution and buffer containing no cholesterol. Steady-state anodic currents were observed during exposures of cholesterol solutions ranging in concentration from 10 to 1000 μM. These data are consistent with the Michaelis-Menten kinetic model for oxidation of cholesterol as catalyzed by cholesterol oxidase immobilized in the lipid bilayer membrane. The cholesterol detection limit is below 1 μM for cholesterol solution prepared in buffered cyclodextrin. The response of the electrodes to low density lipoprotein solutions is increased upon addition of cyclodextrin. Evidence for adsorption of low density lipoprotein to the electrode surface is presented.  相似文献   

3.
《Analytical letters》2012,45(19-20):1973-1986
Abstract

A very small glucose sensor has been realized, which consists of a gold working electrode with a glucose oxidase immobilized membrane on it, and a gold counter electrode, all made on a sapphire substrate. By using the pH sensitive ISFET as a reference electrode, the potential for a solution, whose pH is constant, can be measured and irreversible metal electrodes, such as gold or platinum, can be used as working electrode and counter electrode. The sensor is very suitable for miniaturizing and mass production, because the Integrated Circuit (IC) fabrication process can be applied. The glucose oxidase immobilized membrane was also deposited by a lift off method, one of the IC processes. A glucose concentration, from 1 to 100 mg/dl, was measured with good linear current output.  相似文献   

4.
Electrochemical paper-based analytical devices (ePADs) with integrated plasma isolation for determination of glucose from whole blood samples have been developed. A dumbbell shaped ePAD containing two blood separation zones (VF2 membranes) with a middle detection zone was fabricated using the wax dipping method. The dumbbell shaped device was designed to separate plasma while generating homogeneous flow to the middle detection zone of the ePAD. The proposed ePADs work with whole blood samples with 24–60% hematocrit without dilution, and the plasma was completely separated within 4 min. Glucose in isolated plasma separated was detected using glucose oxidase immobilized on the middle of the paper device. The hydrogen peroxide generated from the reaction between glucose and the enzyme pass through to a Prussian blue modified screen printed electrode (PB-SPEs). The currents measured using chronoamperometry at the optimal detection potential for H2O2 (−0.1 V versus Ag/AgCl reference electrode) were proportional to glucose concentrations in the whole blood. The linear range for glucose assay was in the range 0–33.1 mM (r2 = 0.987). The coefficients of variation (CVs) of currents were 6.5%, 9.0% and 8.0% when assay whole blood sample containing glucose concentration at 3.4, 6.3, and 15.6 mM, respectively. Because each sample displayed intra-individual variation of electrochemical signal, glucose assay in whole blood samples were measured using the standard addition method. Results demonstrate that the ePAD glucose assay was not significantly different from the spectrophotometric method (p = 0.376, paired sample t-test, n = 10).  相似文献   

5.
Kalaycı S  Somer G  Ekmekci G 《Talanta》2005,65(1):87-91
An electrode for glucose has been prepared by using an iodide selective electrode with the glucose oxidase enzyme. The iodide selective electrode used was prepared from 10% TDMAI and PVC according our previous study. The enzyme was immobilized on the iodide electrode by holding it at pH 7 phosphate buffer for 10 min at room temperature. The H2O2 formed from the reaction of glucose was determined from the decrease of iodide concentration that was present in the reaction cell. The iodide concentration was followed from the change of potential of iodide selective electrode. The potential change was linear in the 4×10−4 to 4×10−3 M glucose concentration (75-650 mg glucose/100ml blood) range. The slope of the linear portion was about 79 mV per decade change in glucose concentration. Glucose contents of some blood samples were determined with the new electrode and consistency was obtained with a colorimetric method. The effects of pH, iodide concentration, the amount of enzyme immobilized and the operating temperature were studied. No interference of ascorbic acid, uric acid, iron(III) and Cu(II) was observed. Since the iodide electrode used was not an AgI-Ag2S electrode, there was no interference of common ions such as chloride present in biological fluids. The slope of the electrode did not change for about 65 days when used 3 times a day.  相似文献   

6.
《Analytical letters》2012,45(4):513-527
Abstract

An enzyme membrane electrode usable for the assay of oxalate in foodstuffs is described. A commercially available preactivated polyamide membrane was used for the immobilization of oxalate oxidase. The bioactive disk thus obtained was associated with an amperometric transducer. The resulting self-contained enzyme electrode wich allows oxalate determination in various materials with minimal pretreatment exhibits a linear calibration ranging from 10–7 M and 10–4 M in the cell. The response-time was comprised between 20 seconds and 1 minute, depending on the oxalate content in the sample. The electrode-response was very stable for at least 4 months, a period during which more than 150 assays were performed.

The results obtained with several food materials were in good agreement with those obtained with the conventional spectrophotometric method. Assays were also performed with a microprocessor-based analyzer normally used for glucose measurements with a glucose oxidase electrode When the analyzer is equipped with an oxalate oxidase membrane, without further setting, oxalate can be determined in the range 5 10?3 M-10?1 M in the sample.  相似文献   

7.
Pyruvate oxidase (E.C. 1.2.3.3.) is immobilized by adsorption on a wet PVC membrane. Glutamate-pyruvate transaminase activity (5–1600 IU l?1) in serum is determined by a pyruvate oxidase sensor consisting of the immobilized pyruvate oxidase coupled to a platinum electrode for measuring hydrogen peroxide, after an l-alanine—α-ketoglutarate reaction. The assay requires ?60 s, and has a precision of 2–3%. Endogenous pyruvate should not interfere if measurements are made > 30 s after starting the reaction.  相似文献   

8.
Radiation induced grafting of acrylic acid (AA) onto 40 μm polytetrafluoroethylene (PTFE) films was carried out by the direct method of multiple (discrete) and single irradiation form 60Co source at different doses up to 100 kGy and room temperature. Depending on the method, the grafting takes place either on the surface layer or within the polymer matrix. The graft copolymers synthesized (PTFE-g-PAA) were transformed into ionomers by treatment with KOH. Both forms were used as carriers for immobilization of enzymes. The copolymers in H- and K-forms were activated by the acylazide method and glucose oxidase (GOD) was immobilized on them. The most suitable proved to be the ionomers PTEE-g-COOK obtained by single irradiation, possessing activity of ca. 120 mU/cm2. Enzyme biosensor was designed based on Clark-type electrode and the active membranes prepared, where the membrane plays both the roles of enzyme and oxygen membrane. It can be used for determination of glucose in solutions.  相似文献   

9.
An enzyme electrodes is described for glucose determination in unstirred, undiluted whole blood. The system comprises an H2O2-detecting electrode upon which is placed a membrane laminate incorporating glucose oxidase. The external membrane was pretreated with methyltrichlorosilane. The electrode response was linearly dependent on glucose concentration up to 50 mmol l?1 glucose, it had a decreased dependence on dissolved oxygen concentrations and gave response times of 30–90 s. Whole blood glucose measurements correlated well with a routine spectrophotometric method.  相似文献   

10.
The amperometric peroxidase electrode measures hexacyanoferrate(III), produced by hydrogen peroxide, which is generated by injecting a 2μl sample into a reactor of immobilized glucose oxidase covalently bound to silica gel. The peak current is linearly related to the glucose concentration in the range 0.05–10 g l?1; sample throughput is about 100 h?1. Ascorbic acid (? 0.5 mM) does not interfere.  相似文献   

11.
Glucose oxidase is immobilized onto a cellulose acetate membrane by glutaraldehyde linkage, and the membrane is used to cover the platinum electrode of a hydrogen peroxide sensor. A silanized polycarbonate membrane then covers the enzyme layer, and extends the linear calibration range to higher concentrations. The sensor, when incorporated into a flow-injection system, allows the determination of glucose at levels up to 1 M in soft drinks at a rate of 60 samples h?1 without sample dilution.  相似文献   

12.
A novel amperometric biosensor utilizing two enzymes, glucose oxidase (GOD) and horseradish peroxidase (HRP), was developed for the cathodic detection of glucose. The glucose biosensor was constructed by electrochemical formation of a polypyrrole (PPy) membrane in the presence of GOD on the surface of a HRP-modified sol-gel derived-mediated ceramic carbon electrode. Ferrocenecarboxylic acid (FCA) was used as mediator to transfer electron between enzyme and electrode. In the hetero-bilayer configuration of electrode, all enzymes were well immobilized in electrode matrices and showed favorable enzymatic activities. The amperometric detection of glucose was carried out at +0.16 V (versus saturated calomel reference electrode (SCE)) in 0.1 M phosphate buffer solution (pH 6.9) with a linear response range between 8.0×10−5 and 1.3×10−3 M glucose. The biosensor showed a good suppression of interference in the amperometric detection.  相似文献   

13.
Glucose oxidase was immobilized on a Millipore (MP) filter by coating with plasma-polymerized propargyl alcohol. The resulting immobilized enzyme membrane was used as a glucose sensor. The properties as a glucose electrode system were evaluated by amperometric response with either the steady-state method or the reaction rate method. The response was proportional to concentrations of the glucose solution up to 2 mM and the sensitivity was dependent on the amount of GOD impregnated into the MP filter.  相似文献   

14.
A high power enzymatic fuel‐cell was anticipated by using a recently developed glucose oxidase (GOx) immobilized bio‐anode, a conventional platinum?carbon based cathode and a popular high performance 125 μ‐thick perfluorosulfonic acid‐type proton exchange membrane (i. e. Nafion® 115). Unexpected current density decay from 2.13 mA cm?2 to 0.28 mA cm?2 was observed within 2 hours. Polarization measurements and AC impedance analysis indicated that loss of performance was linked to the membrane behavior. Ion exchange between buffer solution and membrane was perceived as the main cause for the fast performance loss. Saturation of the membrane with the cation in the buffer solution diminished proton transfer needed for cathode reaction. Charge transfer resistances, obtained from AC impedance data, increased with time substantially due to cation exchange within membrane. Replacement of membrane with the same enzyme electrode and cathode has resulted 100 % current density recovery on the fuel cell performance. It was concluded that a membrane, not affected by the buffer cations, was required for successful enzymatic fuel cell applications.  相似文献   

15.
A porous reticulated vitreous carbon (RVC) electrode and a disk electrode coupled in tandem in an electrochemical flow cell has been used for electrolytic removal of interferents before amperometric glucose detection. The electrolytic efficiency at the upstream RVC electrode is 100% at a flow rate of 0.1 mL min−1 or lower. Potential interferents such as acetaminophen, ascorbic acid, and uric acid can be completely eliminated by electrolysis at the RVC electrode. A mixed monolayer comprising glucose oxidase (GOD) and ferrocenyl-1-undecanethiol preformed at the downstream gold disk electrode was used as a mediator-based amperometric glucose sensor. The dependence of the amperometric current on the glucose concentration exhibits good linearity across over three orders of magnitude. The glucose measurements were also found to be reproducible (RSD < 3.5%) and accurate. Unlike the chemiluminescence method, this device obviates the use of carcinogenic substrates and the glucose sensor performance is independent of the oxygen present in sample. On the basis that the RVC electrode requires minimal cleanup and the GOD-modified electrode remains stable for a week, the electrochemical flow cell should be amenable for automated on-line removal of redox interferents for other types of enzyme-based biosensors.  相似文献   

16.
Glucose oxidase was attached to platinum-platinum oxide screens via alkylamine silaneglutaraldehyde coupling. The amount of immobilized enzyme was equivalent to 0.0031 µg of soluble glucose oxidase per cm2 of screen surface. The platinum-silane-glutaraldehydeenzyme screens were tested potentiometrically in buffered glucose solutions, with respect to a Ag/AgCl reference electrode. The results were expressed as the difference in potential for the enzyme screens placed in buffer containing glucose and placed in plain buffer. This difference in potential was related linearily to the logarithm of the glucose concentration over the range 5–150 mg glucose/100 ml. The source of the potential may be due to the decomposition of hydrogen peroxide produced by the glucose oxidase catalyzed oxidation of glucose. The approach is being studied for possible development of an implantable sensor for continuousin vivo monitoring of glucose levels.  相似文献   

17.
A hypoxanthine biosensor was constructed using immobilized xanthine oxidase and a polarographic electrode. The enzyme was covalently immobilized on a commercially available preactivated nylon membrane. The polarographic electrode detected hydrogen peroxide and uric acid released during the enzymatic reaction. The electrode responded linearly to hypoxanthine concentration in the range 3.6–107 μM. When applied to the determination of hypoxanthine in several fish meats, the results obtained agreed well with those obtained by the conventional enzymatic method. More than 40 assays could be performed with the same membrane and each sample could be assayed in ca. 2–3 min. The biosensor provides a reliable, simple, rapid and economical method for the measurement of hypoxanthine, a useful indicator of fish freshness.  相似文献   

18.
A flow injection system for glucose and urea determination is described. The glucose determination uses immobilized glucose oxidase in a reactor designed to give 100% substrate conversion. The hydrogen peroxide formed is converted to a coloured complex with 4-aminophenazone and N,N-dimethylaniline. The coupling is catalysed by a reactor containing immobilized peroxidase. The coloured complex is measured in a flow-through spectrophotometric cell. Urea is converted to ammonia in a reactor with immobilized urease and detected with an ammonia gas membrane electrode. Proteins and other interfering species from serum samples are removed in an on-line dialyzer. Calibration curves are linear for glucose in the range 1.6 × 10-4–1.6 × 10-2 M and for urea in the range 10-4–10-1 M. The samples are 25 μl for glucose determination and 100 μl for urea determination. Linear ranges can be changed by varying the sample sizes. The effects of the dialyser, enzyme reactors and detectors on dispersion are evaluated.  相似文献   

19.
Using CMOS-compatible processes, a microelectrode system for use in a micro flow-through cell was manufactured. The electrode was specially designed to enable multianalyte determination with immobilized oxidase enzymes and combines minimal flow dependency with a very small dead volume (< 1 μL) of the cell. This allows biomedical applications like measurements of glucose and lactate in interstitial fluid, which can be collected by ultrafiltration. Besides a 3-electrode system with 4 individually addressable platinum working electrodes, the sensor contains 2 electrodes that measure the conductivity of the sample as well as a Pt thermoresistor to measure the temperature. The temperature dependence in enzyme reactions can thus be controlled during on-line measurements. The 4 working electrodes comprise multielectrode arrays, each comprising 192 micro-holes with a diameter of 3.6 μm. They are arranged symmetrically around the central counter electrode, which is surrounded by a circular Ag/AgCl reference electrode. Between the array and the reference electrode are the loops of the Pt thermoresistor. The thermoresistor is electrically insulated from the measurement solution by a Si3N4 layer. A method for the pretreatment of platinum thin-film electrodes that increases the reversibility of the electrode process is described. The chemical modification of the working electrodes by electropolymerization of a resorcinol/1,3-diaminobenzene mixture enables interference-free measurement in blood and plasma as well as protection against electrode fouling.  相似文献   

20.
《Analytical letters》2012,45(7):1158-1172
Abstract

A disposable glucose biosensor is developed by immobilizing glucose oxidase into silver nanoparticles-doped silica sol-gel and polyvinyl alcohol hybrid film on a Prussian blue-modified screen-printed electrode. The silver nanoparticles-enhanced biosensor shows a linear amperometric response to glucose from 1.25 × 10?5 to 2.56 × 10?3 with a sensitivity of 20.09 mA M?1 cm?2, which is almost double that of the biosensors without silver nanoparticles. The immobilized glucose oxidase retained 91% of its original activity after 30 days of storage in phosphate buffer (pH 6.9; 0.1 M) at 4°C. Blood glucose in a rabbit serum sample was successfully measured with the biosensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号