首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Preparation of monolithic capillary columns for separations in the CEC mode using UV-initiated polymerization of the plain monolith followed by functionalization of its pore surface by photografting has been studied. The first step enabled the preparation of generic poly(butyl methacrylate-co-ethylene dimethacrylate) monoliths with optimized porous properties, controlled by the percentages of porogens 1-decanol and cyclohexanol in the polymerization mixture, irradiation time, and UV light intensity. Ionizable monomers [2-(methacryloyloxy)ethyl]trimethylammonium chloride or 2-acryloamido-2-methyl-1-propanesulfonic acid were then photografted onto the monolithic matrix, allowing us to control the direction of the EOF in CEC. Different strategies were applied to control the grafting density and, thereby, the magnitude of the EOF. To control the hydrophobic properties, two approaches were tested: (i) cografting of a mixture of the ionizable and hydrophobic monomers and (ii) sequential grafting of the ionizable and hydrophobic monomers. Cografting resulted in similar retention but higher EOF. With sequential grafting, more than 50% increase in retention factors was obtained and a slight decrease in EOF was observed due to shielding of the ionizable moieties.  相似文献   

2.
A protein-bonded porous-layer open-tubular (PLOT) column has been synthesized and applied to the separation of amino acids by CEC. The porous layer was coated on the capillary inner wall by in situ polymerization of 2-hydroxyethyl methacrylate and 2-vinyl-4,4-dimethylazlactone in the presence of 1-decanol as a porogen inside a fused-silica capillary silanized with gamma-methacryloxypropryltrimethoxysilane. The azlactone functionalities at the surface of the porous polymeric support layer were allowed to react with BSA to yield a protein-bonded PLOT column. This porous layer was characterized by scanning electron microscopy and its thickness was about 1 microm. CEC on this column gave enhanced resolution of three amino acids (histidine, phenylalanine, and tryptophan), and baseline separation was achieved with 20 mM phosphate buffer, pH 8.0.  相似文献   

3.
Capillary electrochromatography (CEC), which combines the advantages of the high efficiency of capillary electrophoresis (CE) and the high selectivity of liquid chromatography (LC), has recently received considerable attention. Most CEC experiments have been performed with capillary columns packed with small LC packing materials (1.5–5 μm particle diameter). However, problems such as difficulties in packing the small LC packing materials and fabricating the frits still exist in preparing the CEC column. The use of open-tubular columns in CEC is therefore an alternative approach that can eliminate the problems encountered in packed-column CEC. So far, several types of open-tubular columns have been proposed for CEC separations and in this article recent progress in this area is reviewed.  相似文献   

4.
Enhancing the specific surface area of stationary phase is important in chromatographic science, especially in open-tubular column in which the coating only exists on the inner surface. In this work, a porous layer open-tubular (PLOT) column with stationary phase of styrene and itaconic acid-copolymerized polymer was developed. Thermal-initiated polymerization method with strategies like controlling the ratio of reaction reagents to solvents and reaction time, confinement by the narrow inner diameter of capillary were used for preparing the stationary phase with uniform structure and relatively thick layer. Due to the high separation efficiency and capacity, the PLOT column was used for capillary electrochromatography (CEC) separation of multiple groups of analytes like alkylbenzenes, phenyl amines, phenols, vanillins, and sulfonamides with theoretical plates (N) up to 1,54,845 N/m. In addition, due to high permeability of the CEC column and large electroosmotic flow mobility generated by abundant carboxyl groups in the coating material, the PLOT-CEC column was successfully coupled with mass spectrometry (MS) through a sheath flow interface. The developed PLOT-CEC-MS method was used for the analysis of antiseptics like parabens and herbicides like pyridines.  相似文献   

5.
Modern rigid porous polymer monoliths were conceived as a new class of stationary phases in classical columns in the early 1990s and later extended to the capillary format. These monolithic materials are typically prepared using a simple molding process carried out within the confines of the capillary. Polymerization of a mixture comprising monomers, initiator, and porogenic solvent affords macroporous materials with large through-pores that enable applications in a rapid flow-through mode. Since all the mobile phase must flow through the monolith, convection considerably accelerates mass transport within the monolithic separation medium and improves the separations. As a result, monolithic columns perform well even at very high flow rates. Various mechanisms including thermally and UV initiated free radical polymerization as well as ring opening metathesis copolymerizations were demonstrated for the preparation of monolithic capillary columns. The versatility of these preparation techniques was demonstrated by their use with hydrophobic (styrene, divinylbenzene, butyl methacrylate, ethylene dimethacrylate), hydrophilic (2-hydroxyethyl methacrylate, methacrylamide, methylenebisacrylamide), ionizable (vinylsulfonic acid, 2-acrylamido-2-methyl-propanesulfonic acid), and tailor-made (norborn-2-ene, 1,4,4a,5,8,8a-hexahydro-1,4,5,8-exo,endo-dimethanonaphthalene) monomers. Variation of polymerization conditions enables control of the porous properties of the monolith over a broad range and mediates the hydrodynamic properties of the monolithic columns. The applications of polymer-based monolithic capillary columns are demonstrated for numerous separations in the microHPLC mode.  相似文献   

6.
Column technology for capillary electrochromatography   总被引:4,自引:0,他引:4  
Column technologies for capillary electrochromatography (CEC) are reviewed. To achieve high efficiency, the inner diameters of open-tubular and packed columns should be less than 25 and 200 μm, respectively. To obtain acceptable separation speed under typical CEC conditions (e.g. 30 kV, 1 mm s−1 electroosmotic flow velocity, and 2–4×10−8 m2 V−1 s−1 electroosmotic mobility) the column lengths for open-tubular and packed columns should be less than 120 and 60 cm, respectively. Capillary CEC columns are generally classified into three types: packed, open-tubular, and continuous-bed or monolithic. The various column preparation procedures and the advantages and disadvantages of each column type are discussed in detail.  相似文献   

7.
窄内径多孔层毛细管开管柱(NPLOT柱)在生命科学领域,特别是单细胞分析领域具有较好的应用前景。本研究采用原位热引发聚合法来制备窄内径奎尼丁类手性固定相多孔层开管柱,在6 μ m i.d.的毛细管中制备有机聚合物多孔层,考察了不同热聚合时间(3、6和9 h)对NPLOT柱形貌的影响,热聚3 h和6 h制备的NPLOT柱形貌均一,多孔层厚度分别为103±51 nm和210±51 nm。将热聚合3 h制备的NPLOT柱用于纳流高效液相色谱分离N-衍生化氨基酸对映体,在2 min内即可实现基本分离,消耗的样品量仅为皮升级别。该研究将为单细胞分析提供研究手段。  相似文献   

8.
Monolithic capillary columns based on pentaerythritol triacrylate and pentaerythritol tetraacrylate were synthesized using different compositions of polymerization mixtures and different polymerization conditions. The impact of porogen type and porogen/monomer ratio on the porosity of synthesized monoliths was investigated. Porogen type appears to be the main factor influencing the separating properties of the monolithic sorbent. Using optimal polymerization conditions (porogen type, porogen/monomer ratio, reaction temperature, time etc.) monoliths with a porous structure optimized for polymer separations can be obtained. The monolithic capillary columns containing porous sorbents with optimized porosity are capable of separating 10 to 12 polystyrene standards in one chromatographic run utilizing both size exclusion chromatography and hydrodynamic chromatography separation mechanisms.  相似文献   

9.
A novel tentacle-type polymer stationary phase covalently modified with branched polyethyleneimine (PEI) was developed for peptides and proteins separations by open-tubular CEC (OT-CEC). The preparation procedure included the silanization of capillary inner wall, in situ graft polymerization and PEI functionalization. A wrinkly polymer surface of multitudinous steric amine groups was evenly formed on the capillary inner wall, and anodic EOF could be gained within a wide pH range of 2.5-7.5. The electroosmotic mobility was examined for its dependence on pH as well as PEI concentrations. Good repeatability was gained with RSD for the migration time of EOF marker within 4.8% and satisfactory chemical stability was validated. Due to the existence of amine groups on the surface of tentacle-type polymer stationary phase, the silanol effect that occurs between the positively charged biomolecules and the silanols of the capillary column was greatly suppressed. Compared with a monolayer-coating capillary, seven enkephalin-related peptides were well resolved on the PEI-bonded column with high efficiencies. Favorable separations of peptides and proteins with high column efficiencies were obtained in 144,000-189,000 and 97,000-170,000 plates/m. Branched PEI-bonded tentacle-type polymer stationary phase has been proven to afford satisfactory retention and resolution of peptides and proteins.  相似文献   

10.
In recent years, continuous separation media have attracted considerable attention because of the advantages they offer over packed columns. This research resulted in two useful monolithic material types, the first based on modified silica gel and the second on organic polymers. This work attempts to review advances in the development, characterization, and applications of monolithic columns based on synthetic polymers in capillary chromatography, with the main focus on monolithic beds prepared from methacrylate-ester based monomers. The polymerization conditions used in the production of polymethacrylate monolithic capillary columns are surveyed, with attention being paid to the concentrations of monomers, porogen solvents, and polymerization initiators as the system variables used to control the porous and hydrodynamic properties of the monolithic media. The simplicity of their preparation as well as the possibilities of controlling of their porous properties and surface chemistries are the main benefits of the polymer monolithic capillary columns in comparison to capillary columns packed with particulate materials. The application areas considered in this review concern mainly separations in reversed-phase chromatography, ion-exchange chromatography, hydrophobic and hydrophilic interaction modes; enzyme immobilization and sample preparation in the capillary chromatography format are also addressed.  相似文献   

11.
The origin of bubble formation during operation of capillary electrochromatography (CEC) has been an issue of debate. Ohmic heating resulted from current passed through a packed column was proposed as the primary cause. However, this explanation has been questioned on the ground that the current measured in CEC is much lower than that measured with open-tubular separation systems where no bubble formation occurs. To resolve this issue, we carried out a theoretical study correlating self-heating of the electrolyte with packing structure of the column. We used a bundle of capillary tubes, a bundle of two types of capillary tubes and two bundles of capillary tubes connected serially to model, respectively, the flow channels in the column of non-porous particles, in the column of porous particles and in the column of various packing densities. The results from this study indicate that, for columns of homogeneous packing density, the heat output is indeed smaller than that in open-tubular columns of the same dimensions. In this case, the self-heating cannot be a key factor responsible for the bubble formation in CEC. However, for columns of heterogeneous packing density, a large excess of heat release may be produced in column sections of high packing density and, in turn, over-heating in such sections may become the primary cause for the formation of bubbles. It follows from this study that preparation of columns of homogeneous packing structure is essential to obtain reproducible and bubble-free CEC systems.  相似文献   

12.
Preparation of organic polymer monolithic columns in fused silica capillaries was aimed at fast gradient separation of proteins. For this purpose, polymerization in situ procedure was optimized, using ethylene dimetacrylate and butyl metacrylate monomers with azobisisobutyronitrile as initiator of the polymerization reaction in presence of non-aqueous porogen solvent mixtures composed of 1-propanol and 1,4-butanediol. The separation of proteins in totally monolithic capillary columns was compared with the chromatography on a new type of "hybrid interparticle monolithic" capillary columns, prepared by in situ polymerization in capillary packed with superficially porous spherical beds, 37-50 microm. The "hybrid" columns showed excellent stability and improved hydrodynamic flow properties with respect to the "totally" monolithic capillary columns. The separation selectivity is similar in the two types of columns. The nature of the superficially porous layer (bare silica or bonded C18 ligands) affects the separation selectivity less significantly than the porosity (density) of the monolithic moiety in the interparticle space, controlled by the composition of the polymerization mixture. The retention behaviour of proteins on all prepared columns is consistent with the reversed-phase gradient elution theory.  相似文献   

13.
Rigid porous polymer monoliths are a new class of materials that emerged in the early 1990s. These monolithic materials are typically prepared using a simple molding process carried out within the confines of a closed mold. For example, polymerization of a mixture comprising monomers, free-radical initiator, and porogenic solvent affords macroporous materials with large through-pores that enable applications in a rapid flow-through mode. The versatility of the preparation technique is demonstrated by its use with hydrophobic, hydrophilic, ionizable, and zwitterionic monomers. Several system variables can be used to control the porous properties of the monolith over a broad range and to mediate the hydrodynamic properties of the monolithic devices. A variety of methods such as direct copolymerization of functional monomers, chemical modification of reactive groups, and grafting of pore surface with selected polymer chains is available for the control of surface chemistry. Since all the mobile phase must flow through the monolith, the convection considerably accelerates mass transport within the molded material, and the monolithic devices perform well, even at very high flow rates. The applications of polymeric monolithic materials are demonstrated mostly on the separations in the HPLC mode, although CEC, gas chromatography, enzyme immobilization, molecular recognition, advanced detection systems, and microfluidic devices are also mentioned.  相似文献   

14.
The current popularity of capillary electrochromatography (CEC) has led to an increasing number of studies on the development and evaluation of enantioselective CEC systems. These studies clearly demonstrate that the most prominent advantage of electrically driven separation methods, the vastly increased column efficiency as compared to pressure-driven chromatography, can also be experimentally achieved for the separations of enantiomers. In analogy to high-performance liquid chromatography (HPLC) and capillary electrophoresis (CE), several approaches have been used. The addition of a chiral selector to the mobile phase is the simplest method. Less erroneous and more elegant approaches are those that use open-tubular, conventional packed, and monolithic columns containing chiral stationary phases that stereoselectively interact with enantiomers. This review evaluates the new techniques and compares them to enantioselective HPLC and CE. Further, it describes the various concepts of enantioselective CEC and focuses on the current ‘state-of-the-art' column technology.  相似文献   

15.
Malik A 《Electrophoresis》2002,23(22-23):3973-3992
The development of sol-gel open-tubular column technology in capillary electrochromatography (CEC) is reviewed. Sol-gel column technology offers a versatile means of creating organic-inorganic hybrid stationary phases. Sol-gel column technology provides a general approach to column fabrication for microseparation techniques including CEC, and is amenable to both open-tubular and monolithic columns. Direct chemical bonding of the stationary phase to the capillary inner walls provides enhanced thermal and solvent stability to sol-gel columns. Sol-gel stationary phases inherently possess higher surface area, and thus provide an effective one-step alternative to conventional open-tubular column technology. Sol-gel column technology is applicable to both silica-based and transition metal oxide-based hybrid stationary phases, and thus, provides a great opportunity to utilize advanced material properties of a wide range of nontraditional stationary phases to achieve enhanced selectivity in analytical microseparations. A wide variety of stationary phase ligands can be chemically immobilized on the capillary inner surface using a single-step sol-gel procedure. Sol-gel chemistry can be applied to design stationary phases with desired chromatographic characteristics, including the possibility of creating columns with either a positive or a negative charge on the stationary phase surface. This provides a new tool to control electroosmotic flow (EOF) in the column. Column efficiencies on the order of half a million theoretical plates per meter have been reported for sol-gel open-tubular CEC columns. The selectivity of sol-gel stationary phases can be easily fine-tuned by adjusting the composition of the coating sol solution. Open-tubular columns have significant advantages over their packed counterparts because of the simplicity in column making and hassle-free fritless operation. Open-tubular CEC columns possess low sample capacity and low detection sensitivity. Full utilization of the analytical potential of sol-gel open-tubular columns will require a concomitant development in the area of high-sensitivity detection technology.  相似文献   

16.
The present review intends to summarize recent developments in the field of enantioselective separations and analysis by CEC. It covers studies published in English language in common peer-reviewed journals within the period between 2003 and 2006. Both, methods making use of chiral mobile phase additives as well as chiral stationary phases for electrochromatographic enantiomer separations, are reviewed. Achievements that have been made on the various column technologies, such as open-tubular, particle-packed, inorganic, organic and particle-fixed (hybrid-type) monolithic as well as molecularly imprinted polymer phases, are discussed.  相似文献   

17.
Chen JL  Lu TL  Lin YC 《Electrophoresis》2010,31(19):3217-3226
A new phase containing immobilized carbon nanotubes (CNTs) was synthesized by in situ polymerization of acid-treated multi-walled CNTs using butylmethacrylate (BMA) as the monomer and ethylene dimethacrylate as the crosslinker on a silanized capillary, forming a porous-layered open-tubular column for CEC. Incorporation of CNT nanomaterials into a polymer matrix could increase the phase ratio and take advantage of the easy preparation of an OT-CEC column. The completed BMA-CNT column was characterized by SEM, ATR-IR, and EOF measurements, varying the pH and the added volume organic modifier. In the multi-walled CNTs structure, carboxylate groups were the major ionizable ligands on the phase surface exerting the EOF having electroosmotic mobility, 4.0 × 10(4) cm2 V(-1)1 S(-1)1, in the phosphate buffer at pH 2.8 and RSD values (n=5), 3.2, 4.1, and 4.3%, for three replicate capillaries at pH 7.6. Application of the BMA-CNT column in CEC separations of various samples, including nucleobases, nucleosides, flavonoids, and phenolic acids, proved satisfactory upon optimization of the running buffers. Their optima were found in the borate buffers at pH 9.0/50 mM, pH 9.5/10 mM/50% v/v ACN, and pH 9.5/30 mM/10% v/v methanol, respectively. The separations could also be used to assess the relative contributions of electrophoresis and chromatography to the CEC mechanism by calculating the corresponding velocity and retention factors. Discussions about interactions between the probe solutes and the bonded phase included the π-π interactions, electrostatic repulsion, and hydrogen bonding. Furthermore, a reversed-phase mode was discovered to be involved in the chromatographic retention.  相似文献   

18.
Summary A new method is described to prepare polymeric porous-layer open-tubular (PLOT) columns by using a two-step in-situ polymerization technology. The integrated method involves a straightforward in-situ polymerization of the monomer. By using -(trimethoxysilyl)propyl methacrylate as a bridge, the porous polymer is bonded to the columns inner wall, and this polymer is crosslinked so the whole polymer looks like a single moleculer. The new column avoids the defects of traditional polymer PLOT columns where particles are easily released and swept through the column, causing blockage or a spiking detection signal. The new type of PLOT column is coated with a divinylbenzene and ethylene glycol dimethyl acrylate copolymer and has an increased polarity when compared to a conventional polymer Q-type PLOT column. The retention characteristics of the new column were evaluated and found to be comparable with the commercially available HP PLOT-U column. The inertness of the porous polymer allows the elution of a range of apolar and polar compounds: even most active and polar compounds such as H2O and H2S eluted symmetrically. The new column possesses high stability and can withstand temperatures up to 210 °C. With this new type of capillary columns, significantly better mechanical stability, temperature endurance, reproducibility, strong separation power and good inertness are obtained in combination with short analysis times.  相似文献   

19.
Enhanced chiral separation performance has been observed for ketoprofen enantiomers in capillary electrochromatography (CEC) with an open-tubular (OT) column prepared with a specific molecule imprinted polymer (MIP) on the innerwall of 50mum ID capillary. The column was prepared by in situ thermal polymerization inside the pretreated and silanized fused silica capillary. A specific diluted monomer mixture composed of S-ketoprofen, methacrylic acid (MAA, functional monomer), ethylene glycol dimethacrylate (EDMA, cross-linker), and 4-styrenesulfonic acid (4-SSA) dissolved in 9/1 (v/v) acetonitrile/2-propanol was used to fabricate the OT-MIP layer. 4-SSA was added to form a MIP layer capable of stable and strong electro-osmotic flow (EOF) over the pH range of this study securing CEC elution of ketoprofen having partial negative charge near the optimized pH. Various parameters such as buffer pH, organic modifier composition, salt concentration, and applied potential have been optimized for CEC chiral separation of ketoprofen enantiomers. Very good separation selectivity and efficiency were observed, thus the chromatographic resolution of ketoprofen enantiomers was as high as 10.5, and the number of theoretical plates of R-ketoprofen, 156,000/m (40,000/m for S-ketoprofen), which proves that the OT-MIP-CEC type approach is a promising strategy in MIP study.  相似文献   

20.
Open-tubular columns for capillary electrochromatography (CEC) were formed by immobilising dodecanethiol gold nanoparticles on prederivatised 3-aminopropyl-trimethoxysilane (APTMS) or 3-mercaptopropyl-trimethoxysilane (MPTMS) fused-silica capillaries. The initial stage of this research involved the synthesis and characterisation of dodecanethiol gold nanoparticles, with tunnelling electron microscopy analysis of the dispersed phase of the gold nanoparticles dispersion in CHCl3, revealing spherical particles. The surface features of an Au-MPTMS coated capillary column were determined using scanning electron microscopy. The electroosmotic flow characteristics of Au-APTMS and Au-MPTMS capillary columns were then determined, by varying the pH and the voltage. The electrochromatographic properties of the gold nanoparticles CEC capillaries were investigated using a "reversed-phase" test mixture of thiourea, benzophenone and biphenyl and selected pyrethroid pesticides. Efficient separations of benzophenone and biphenyl solutes on Au-MPTMS and Au-APTMS capillary columns were obtained, as were linear plots of logarithm capacity factor versus % MeOH. A study of the reproducibility of retention for these solutes on Au-APTMS, Au-MPTMS and on a loosely coated capillary demonstrated the necessity of a coupling agent to prevent the gold nanoparticles from washing-off. These dodecanethiol gold capillary columns are easier to produce and operate than packed capillary columns. The research work confirms the use of gold nanoparticles as a novel phase for open-tubular CEC, demonstrating reproducible retention and characteristic reversed-phase behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号