首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Numerical methods are used to investigate the transient, forced convection heat/mass transfer from a finite flat plate to a steady stream of viscous, incompressible fluid. The temperature/concentration inside the plate is considered uniform. The heat/mass balance equations were solved in elliptic cylindrical coordinates by a finite difference implicit ADI method. These solutions span the parameter ranges 10 Re 400 and 0.1 Pr 10. The computations were focused on the influence of the product (aspect ratio) × (volume heat capacity ratio/Henry number) on the heat/mass transfer rate. The occurrence on the plates surface of heat/mass wake phenomena was also studied.  相似文献   

2.
Various aspects of the problem of intense blowing through the surface of bodies have, been theoretically studied by a number of authors, within the framework of inviscid flow theory. A detailed bibliography on this topic is given, e.g., in [1, 2]. The well-known approaches to solution of this problem have a limited area of application. For example, asymptotic methods can be used for hypersonic flow regimes only at relatively low levels of the blown gas momentum ( = 2 = ovo 2/ V 2 1). The same limitation applies to the numerical method of straight lines [2]. The forward Eulerian calculation schemes [3, 4] smear the contact discontinuity severely, and cannot handle the case where the blown gas and the gas in the incident flow have different thermodynamic properties (o ). This paper presents results of a numerical investigation of supersonic flow over two-dimensional and axisymmetric bodies with intense blowing on the forward surface, performed using a time-dependent finite-difference method [5] with an explicit definition of the contact interface between the two cases. The calculations encompass a family of elliptic cylinders with semiaxis ratio 0.5 4, a flat-face cylinder, and a flat plate with rounding near the midsection, with variations in the blowing law, the incident flow Mach number M (3 M 10), the adiabatic indices, and the blowing parameter 0 0.5.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 117–124, January–February, 1977.In conclusion, the authors thank T. S. Novikov and I. D. Sandomirskii, who took part In the present calculations.  相似文献   

3.
The possibility of simplifying the formulas obtained by the Maxwell-Loyalka method for the velocity u, temperature T and diffusion d slip coefficients and the temperature jump coefficient in a binary gas mixture with frozen internal degrees of freedom of the molecules is considered. Special attention is paid to gases not having sharply different physicochemical properties. The formulas are written in a form convenient for use without linearization in the thermal diffusion coefficient. They are systematically analyzed for mixtures of inert gases, N2, O2, CO2, and H2 at temperatures extending from room temperature to 2500°K. It is shown that for the molecular weight ratios m* = m2/m1 considered the expressions for u and can be radically simplified. With an error acceptable for practical purposes (up to 10%) it is possible to employ expressions of the same structural form as for a single-component gas: for u if 1 m* 6, and for if 1 m* 3. When 1 m* 2 the expression for T can be simplified with a maximum error of 5%. Within the limits of accuracy of the method the expression for t can be linearized in the thermal diffusion coefficient. An approximate expression convenient for practical calculations is proposed for d Finally, the , u, and T for a single-component polyatomic gas with easy excitation of the internal degrees of freedom of the molecules are similarly analyzed; it is shown that these expressions can be considerably simplified.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 152–159, November–December, 1990.  相似文献   

4.
Results are presented of a study of the gasdynamic parameters and the geometric characteristics of the mixing zone of axisymmetric jets of gases of differing density (Freon-12, air, and helium) propagating in a parallel air stream, within the limits of the initial segment (0x/R3–30). Experimental data are presented on the effect of different densities (0. 27 n8.2) and velocities (0m1.7) of the gas jet and the parallel stream on the mixing process.  相似文献   

5.
In this work, we present a numerical study of mixed convection coupled with radiation in an inclined channel with an aspect ratio B = L/H=10, and locally heated from one side. Convective, radiative and total Nusselt numbers, evaluated on the cold surface and at the exit of the channel, are presented for different combinations of the governing parameters namely, the surface emissivity (0 1), the Reynolds number (10 Re 50), the inclination of the channel with respect to the horizontal surface (0° 90°) and the Rayleigh number (Ra = 105). The ratio, R = QC/QE, of the heat quantities, leaving the channel through the cold wall, QC, and through the exit, QE, is presented to identify the most favorable issue to the heat transfer in the studied configuration. The results obtained show that the flow structure is significantly altered by radiation which contributes to reduce or to enhance the number of the solutions obtained.  相似文献   

6.
The possibility of reducing turbulent friction with the help of large-eddy-breakup devices (LEBUs) and riblets is studied experimentally. The tests were conducted in a low-turbulence wind tunnel on a flat plate for 2·106 Re 7·106. The local friction coefficient was measured using internal strain-gauge balances, and the total drag was estimated by the momentum-transfer method. It is shown that a combination of LEBUs and riblets makes it possible to reduce the total turbulent friction drag of a flat plate 1800 mm long by 16%. The effects of the length of a ribbed surface on the efficiency of friction reduction and of LEBUs and riblets on the structure of a turbulent boundary layer are analyzed.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 39–46, May–June, 1995.  相似文献   

7.
The supersonic perfect-gas flow past a circular cylinder is studied on the basis of a numerical analysis of the time-dependent two-dimensional Reynolds equations using a differential q– turbulence model with reference to the experimental conditions. The calculations are carried out at Reynolds and Mach numbers Re=2× 105 and M=1.1, 1.3, and 1.7 and the experimental investigations at Re=1.62×105–2×105 and Mach numbers on the interval 0.7 M 1.7. The calculated and experimental data on the pressure coefficient distribution over the cylinder surface, the location of the separation point on the surface, and the pressure drag coefficient are compared.  相似文献   

8.
An analysis of the results of numerical experiments in which the two-dimensional flow near a plate placed across an ascending fluid current was simulated is presented. The plate temperature was higher than that of the fluid. Fluid flows with a Prandtl number 0.25 Pr 7 were considered on the moderate Reynolds and Richardson number ranges 25 < Re 100 and 0 Ri < 20. Under these conditions, two flow patterns were observable, which differed from each other by the intensity of the transverse oscillations of a system consisting of attached twin vortices and the near wake. For different Prandtl numbers, in the (Re, Ri1/2) plane the pattern stability boundaries were established, together with the distinctive features of pattern-to-pattern transition. It was found that the vortex arrangement in the wake above the heated plate can differ from that in the von Kàrmàn street in the absence of buoyancy  相似文献   

9.
The results are given of an experimental investigation of the transition to chaos and of the properties of the chaotic regimes in a wide range of Reynolds numbers: 460 Re 3200 7Re0. Estimates of the probability dimension of the attractors and Lyapunov exponents and the exponential damping of the highest-frequency part of the spectrum indicate a deterministic nature of the chaos in the considered range of Re. It is noted that in one and the same range of Re values the route to chaos is not unique and can depend on the prehistory of the flow development; the simultaneous existence of chaotic and regular regimes for fixed values of the parameters is also noted.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 10–18, January–February, 1991.  相似文献   

10.
A method is proposed for calculating hypersonic ideal-gas flow past blunt-edged delta wings with aspect ratios = 100–200. Systematic wing flow calculations are carried out on the intervals 6 M 20, 0 20, 60 80; the results are analyzed in terms of hypersonic similarity parameters.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 175–179, September–October, 1990.  相似文献   

11.
Numerical calculations have been made [1–4] of the pressure distribution over the surface of a sphere or cylinder during transverse flow in the range 0 /2, where is the angle reckoned from the stagnation point along the meridional plane, and on the basis of these results simple analytical equations have been proposed in order to determine the pressure for arbitrary Mach numbers M in the free stream. The gas is assumed to be ideal and perfect.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 185–188, March–April, 1985.  相似文献   

12.
In this paper, the derivation of macroscopic transport equations for this cases of simultaneous heat and water, chemical and water or electrical and water fluxes in porous media is presented. Based on themicro-macro passage using the method of homogenization of periodic structures, it is shown that the resulting macroscopic equations reveal zero-valued cross-coupling effects for the case of heat and water transport as well as chemical and water transport. In the case of electrical and water transport, a nonsymmetrical coupling was found.Notations b mobility - c concentration of a chemical - D rate of deformation tensor - D molecular diffusion coefficient - D ij eff macroscopic (or effective) diffusion tensor - electric field - E 0 initial electric field - k ij molecular tensor - j, j *, current densities - K ij macroscopic permeability tensor - l characteristic length of the ERV or the periodic cell - L characteristic macroscopic length - L ijkl coupled flows coefficients - n i unit outward vector normal to - p pressure - q t ,q t + , heat fluxes - q c ,q c + , chemical fluxes - s specific entropy or the entropy density - S entropy per unit volume - t time variable - t ij local tensor - T absolute temperature - v i velocity - V 0 initial electric potential - V electric potential - x macroscopic (or slow) space variable - y microscopic (or fast) space variable - i local vectorial field - i local vectorial field - electric charge density on the solid surface - , bulk and shear viscosities of the fluid - ij local tensor - ij local tensor - i local vector - ij molecular conductivity tensor - ij eff effective conductivity tensor - homogenization parameter - fluid density - 0 ion-conductivity of fluid - ij dielectric tensor - i 1 , i 2 , i 3 local vectors - 4 local scalar - S solid volume in the periodic cell - L volume of pores in the periodic cell - boundary between S and L - s rate of entropy production per unit volume - total volume of the periodic cell - l volume of pores in the cell On leave from the Politechnika Gdanska; ul. Majakowskiego 11/12, 80-952, Gdask, Poland.  相似文献   

13.
Supersonic flow past a sphere with a given rate of gas injection along the generator is investigated numerically on the range Re=102–104. Calculations have been made on the interval 0 90°, where is the angle between the axis of symmetry and the normal to the surface. It is shown that for high subsonic and sonic injection rates it is possible to observe qualitatively new features in the flow structure and in the distribution of the local supersonic flow characteristics around the perimeter of the sphere not previously noted in [9]. In the case of sonic injection the changes in flow structure occur only in the supersonic zone. In the neighborhood of the transition from a subsonic to sonic injection velocity the heat flux has a local maximum, which in absolute value does not exceed the heat flux in the absence of injection. It is shown that there may be qualitative differences in the pressure distribution over the surface of the body with increase in the injection parameter depending on the distribution and value of the injected gas flow rate and, moreover, the number Re.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 83–89, January–February, 1988.  相似文献   

14.
Linear and nonlinear viscoelastic properties were examined for a 50 wt% suspension of spherical silica particles (with radius of 40 nm) in a viscous medium, 2.27/1 (wt/wt) ethylene glycol/glycerol mixture. The effective volume fraction of the particles evaluated from zero-shear viscosities of the suspension and medium was 0.53. At a quiescent state the particles had a liquid-like, isotropic spatial distribution in the medium. Dynamic moduli G* obtained for small oscillatory strain (in the linear viscoelastic regime) exhibited a relaxation process that reflected the equilibrium Brownian motion of those particles. In the stress relaxation experiments, the linear relaxation modulus G(t) was obtained for small step strain (0.2) while the nonlinear relaxation modulus G(t, ) characterizing strong stress damping behavior was obtained for large (>0.2). G(t, ) obeyed the time-strain separability at long time scales, and the damping function h() (–G(t, )/G(t)) was determined. Steady flow measurements revealed shear-thinning of the steady state viscosity () for small shear rates (< –1; = linear viscoelastic relaxation time) and shear-thickening for larger (>–1). Corresponding changes were observed also for the viscosity growth and decay functions on start up and cessation of flow, + (t, ) and (t, ). In the shear-thinning regime, the and dependence of +(t,) and (t,) as well as the dependence of () were well described by a BKZ-type constitutive equation using the G(t) and h() data. On the other hand, this equation completely failed in describing the behavior in the shear-thickening regime. These applicabilities of the BKZ equation were utilized to discuss the shearthinning and shear-thickening mechanisms in relation to shear effects on the structure (spatial distribution) and motion of the suspended particles.Dedicated to the memory of Prof. Dale S. Parson  相似文献   

15.
In this paper we continue the geometrical studies of computer generated two-phase systems that were presented in Part IV. In order to reduce the computational time associated with the previous three-dimensional studies, the calculations presented in this work are restricted to two dimensions. This allows us to explore more thoroughly the influence of the size of the averaging volume and to learn something about the use of anon-representative region in the determination of averaged quantities.

Nomenclature

Roman Letters A interfacial area of the interface associated with the local closure problem, m2 - a i i=1, 2, gaussian probability distribution used to locate the position of particles - l unit tensor - characteristic length for the-phase particles, m - 0 reference characteristic length for the-phase particles, m - characteristic length for the-phase, m - i i=1,2,3 lattice vectors, m - m convolution product weighting function - m V special convolution product weighting function associated with a unit cell - n i i=1, 2 integers used to locate the position of particles - n unit normal vector pointing from the-phase toward the-phase - r p position vector locating the centroid of a particle, m - r gaussian probability distribution used to determine the size of a particle, m - r 0 characteristic length of an averaging region, m - V averaging volume, m3 - V volume of the-phase contained in the averaging volume,V, m3 - x position of the centroid of an averaging area, m - x 0 reference position of the centroid of an averaging area, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters V /V, volume average porosity - a i standard deviation ofa i - r standard deviation ofr - intrinsic phase average of   相似文献   

16.
Fully developed turbulent flow and heat transfer to air and water in ducts of elliptical cross section have been investigated experimentally. For the ducts of aspect ratio 2.5 1 and larger, a reduction in the overall heat transfer rate was found in the lower turbulent Reynold's number range (Re<25,000). Similar effects have been noted by investigators of narrow triangular cross sections where flow measurements indicated the possible co-existence of laminar and turbulent flow resulting in localised increases in thermal resistance. It was found that the analogy between momentum and heat transfer could not be applied directly to the larger aspect ratio ducts where significant circumferential variations of wall temperature occurred.
Zusammenfassung Voll entwickelte turbulente Strömung und Wärmeübertragung an Luft und Wasser in elliptischen Kanälen wurden experimentell untersucht. Für Kanäle mit Achsenverhältnissen von 2,5 1 und größer fand man eine Verringerung des Wärmedurchgangs im Bereich geringer Reynolds-Zahlen (Re < 25 000). Ähnliche Effekte waren von anderen Autoren in engen Dreieckskanälen gefunden worden, wobei man aus Strömungsmessungen das gleichzeitige Auftreten von laminarer und turbulenter Strömung mit örtlicher Zunahme des thermischen Widerstandes folgern konnte. Die Analogie zwischen Impuls- und Wärmeübertragung konnte nicht unmittelbar auf Kanäle mit großem Achsenverhältnis, bei denen die Umfangstemperatur beträchtlich variierte, angewendet werden.

Nomenclature A cross-sectional area - b duct wall thickness - Cp specific heat at constant pressure - de equivalent diameter of noncircular cross-section (=4A/p) - f Fanning friction coefficient - h local heat transfer coefficient (=qw/(Tw-Tb)) - ¯h average circumferential heat transfer coefficient - k thermal conductivity of fluid - kw thermal conductivity of wall material - K* wall conductivity parameter (= kwb/kde) - p wetted perimeter - qw wall heat flux - Tb bulk fluid temperature - Tw local wall temperature - absolute viscosity - kinematic viscosity (=/) - mass density - Nu Nusselt number (= h de/k) - Nu average circumferential Nusselt number (= ¯h de/k) - Pr Prandtl number (= Cp/k) - Re Reynolds number (= de/) - St Stanton number (= Nu/Re · Pr)  相似文献   

17.
The linearized problem of a completely cavitating wing of the small span is considered. The system of singular integral equations of a cavitating lifting surface is reduced to one-dimensional equations by using the Lawrence approximation. The method of discrete singularities is used for the numerical solution of this system. Dependences of the lift coefficient and the cavern length on the cavitation number are presented for rectangular wings for 0.254.Translated from Izvestiya Akademiya Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 166–170, July–August, 1973.  相似文献   

18.
Internal waves generated by the turbulent wake of a sphere   总被引:1,自引:0,他引:1  
Internal waves generated by the turbulent wake of a sphere travelling horizontally through a linearly stratified fluid were studied using shadowgraph and particle-streak photography. The Reynolds and internal Froude number ranges considered were 2,000 Re 12,900 and 2.0 Fi 28.0, respectively. Two quite distinct flow regimes based on the structure of the turbulent wake were identified. In one, the wake is characterized by large-scale coherent structures. In the other, the wake, as viewed on a side-view shadowgraph, grows in a roughly symmetric fashion to a maximum height and then collapses slowly; such flows are termed the smallscale structures regime.Wave lengths and maximum wave heights of the internal waves were measured as functions of Nt and Fi, where N is the Brunt-Väisälä frequency and t the time. It was found that the wave lengths scale well with the streamwise dimension of the spiralling coherent structures. The maximum amplitude of the internal waves were found to scale with the vertical dimension of the turbulent wake, upon varying the internal Froude number.  相似文献   

19.
Steady flow of supersonic air over a sphere is examined, allowing for viscosity, heat conduction, and actual physical and chemical processes. Flow in the shock layer at flight speeds in the range 3 km/sec V10 km/sec (104R106) is investigated, under the assumption of local thermodynamic equilibrium. The flow is described by simplified Navier-Stokes equations, which are solved by a finite difference method. The case of a cooled surface is examined. The distribution of gasdynamic parameters is obtained in different flow regimes. The distribution of heat flux and friction coefficient is investigated as a function of the oncoming-stream parameters and the sphere radius. The shape and position of the shock wave are determined, and the stream lines and sonic lines are constructed.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 150–153, July–August, 1970.The authors thank Yu. P. Lun'kin and F. D. Popov for their help in formulating the problem and their constant interest.  相似文献   

20.
Zusammenfassung An längsangeströmten dicken Platten löst sich die Strömung im Bereich des Anströmprofils ab und legt sich nach einer gewissen Entfernung wieder an die Platte an. Dies führt gegenüber der dünnen Platte zu signifikanten Veränderungen von Umströmung, Wärmeübergang und Druckverlust.Die Aussagen zur Umströmung werden aus örtlichen Stoffübergangsmessungen (Sc=0,616) mit Hilfe einer remissionsfotometrischen Stoffübergangsmeßmethode auf der Basis von Absorption, chemischer Reaktion und gekoppelter Farbreaktion gewonnen. Als wesentliche Einflußgrößen auf Umströmung und zugeordneten Stoffübergang sind das Anströmprofil, die Anström-Reynolds-Zahl ResB sowie insbesondere die Turbulenzintensität Tu zu nennen. Die Untersuchungen erstrecken sich auf Platten mit Dicken 0,8 mms91, 3 mm mit stumpfem, halbrundem und keilförmigen Anströmprofilen sowie auf längsüberströmte Kreiszylinder mit stumpfem, halbkugelförmigem und kegelförmigen Anströmprofilen. Die mit der Plattendicke s gebildete ResB -Zahl wurde in weiten Grenzen 102 < ResB < 2 · 105, die Turbulenzintensität zwischen 0,8 Tu 6% variiert.Die Ergebnisse zeigen, daß sich die Umströmung dicker Platten generell in drei Hauptströmungsformen Plattengrenzschicht, Ablöseblase und Querwirbelablösung untergliedern läßt. Der Übergang von einer Strömungsform zur anderen wird durch kritische ResB -Zahlen erfaßt und die Abhängigkeit vom Anströmprofil über einen Profilfaktor beschrieben. Bei Ablöseblasen konnten erstmals an Platten Längswirbel nachgewiesen werden mit ihren charakteristischen Auswirkungen auf Umströmung und Stoffübergang.Dicke Platten mit Strömungsablösung lassen sich in drei Abschnitte unterteilen: 1. Profilbereich, 2 Bereich abgelöster Strömung, 3. Plattengrenzschicht ab Wiederanlegen der Strömung. Im Hinblick auf eine Berechnung des örtlichen Stoffübergangs wird die Lage des Stoffübergangsmaximums beim Wiederanlegen der Strömung — als Trennlinie der beiden letzten Plattenabschnitte — unter Einbeziehung der wesentlichen Parameter Anströmprofil, ResB-Zahl und Turbulenzintensität erfaßt und als Berechnungsgleichung angegeben.
The influence of nose section and turbulence intensity on the flow around thick plates in parallel flow
The flow parallel to thick plates separates in the nose section and reattaches on the flat plate after a certain distance. Compared with the thin flat plate the flow separation with reattachement causes significant changes of flow, heat transfer and pressure drop.The informations about the flow are recieved from measurements of local mass transfer coefficients (Sc=0,616), which are fotometrically determined by light-remission. The fundamentals of the measuring technique are based on absorbed ammonia and subsequent chemical reaction with immediate color reaction. The main parameters of flow and related mass transfer are the nose of the plate, the Reynolds-number ResB and especially the turbulence intensity Tu. The measurements were accomplished with plates of a thickness 0.8 mm s 91.3 mm of truncated, hemicylindrical and wedge-shaped noses and with cylinders in parallel flow of truncated, hemispherical and conical noses. The ResB -number with the plate thickness as characteristic length was varied in a wide range between 102 < ResB < 2 · 105, the turbulence intensity Tu between 0,8% Tu 6%.The measured results indicate, that the flow around thick plates may generally be subdivided into three main forms of the flow: boundary layer of flat plate, separation bubble and vortex shedding with reattachement. The critical Reynolds-numbers for the transition of one form to another were determined as a function of the different shapes of noses. For the first time longitudinal vortices can be observed for separation bubbles with significant influence on the flow and on the mass transfer.Thick plates with flow separation and reattachement may be subdivided into three sections: 1. the nose section, 2. the section of separated flow, 3. the section of boundary layer of flat plate downstream of reattachement. For the computation of local mass transfer rates, the position of the maximum mass transfer at the point of reattachement — the dividing line of the 2nd and 3rd section — are determined as a function of the main parameters plate nose, ResB -number and turbulence intensity.

Bezeichnungen d Zylinderdurchmesser - DA Diffusionskoeffizient von Ammoniak in Luft - KP Koeffizient in Gl. (7) - KTu Koeffizient in Gl. (6) - RedB=UB · d/ Reynolds-Zahl - ResB=UB · s/ Reynolds-@#@ Zahl - Reskrit1=UB · s/ Reynolds für den Übergang von Plattengrenzschicht zu Strömungsablösung - Reskrit2=UB · s/ Reynolds-Zahl für den Übergang von Ablöseblase zu Querwirbelablösung - Rexkrit=UB · xkrit/ Reynolds-Zahl für den Übergang von laminarer zu turbulenter Plattengrenzschicht - s Plattendicke einschließlich Trägerfolie - Shs=A · s/DA Sherwood-Zahl - Tu Turbulenzintensität in % - UB Hauptstromgeschwindigkeit im verengten Kanalquerschnitt - U Hauptstromgeschwindigkeit im freien Kanal querschnitt - mittlere turbulente Geschwindigkeitsschwankung in x-Richtung - x Koordinate in Strömungsrichtung, tangential zur Oberfläche - XP Profillänge des Anströmprofils - x Koordinate in x-Richtung ab Profilende (Plattenbeginn) - xmax' Entfernung von Plattenbeginn bis zum Wiederanlegen der Strömung nach Strömungsablösung (Stoffübergangs-maximum) - xmin Entfernung von Plattenbeginn bis zur Stelle minimalen Stoffübergangs - x* Koordinate in x-Richtung ab Wiederanlegen der Strömung nach Strömungsablösung - A Stoffübergangskoeffizient (Ammoniak) - Am mittlerer Stoffübergangskoeffizient - kinematische Zähigkeit Unter dem Titel Einfluß des Anströmprofils auf die Umströmung von Platten endlicher Dicke gekürzt vorgetragen auf der Sitzung des GVC-Fachausschusses Wärme- und Stoffübertragung am 5./6. April 1976 in Schliersee.Herrn Prof. Dr. phil. Dr.-Ing. E.h. Peter Grassmann zum 70. Geburtstag am 13. August 1977.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号