首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Dichloro and chloromethyl Ga(III) complexes of general formulae [XClGa-eta2-{R2P(E)NP(E'R'2-E,E'}](X = Cl, R, R'= Ph, E, E'= O (1), S (2), Se (3); R = Ph, R'= OEt, E = O, E'= S (4); R = Me, R'= Ph, E, E'= S (5) and X = Me, E, E'= O (6), S (7), Se (8)) were synthesised by either metathesis reactions between GaCl3 and the potassium salt of the ligand (X = Cl) or by methane eliminations from in situ prepared GaMe2Cl and the protonated ligands LH (X = Me). Redistribution reaction of (3) in either CDCl3 or THF afforded the solvent-free tetracoordinate gallium spirocycle cation [Ga-{eta2-{Ph2P(Se)NP(Se)Ph2-Se,Se'})2]+ (9+). The molecular structures of complexes 2, 4, 5, 7 and 9(+) show non-planar gallacycle rings.  相似文献   

2.
The rhodium allenylidenes trans-[RhCl[[double bond]C[double bond]C[double bond]C(Ph)R](PiPr(3))(2)] [R = Ph (1), p-Tol (2)] react with NaC(5)H(5) to give the half-sandwich type complexes [(eta(5)-C(5)H(5))Rh[[double bond]C[double bond]C[double bond]C(Ph)R](PiPr(3))] (3, 4). The reaction of 1 with the Grignard reagent CH(2)[double bond]CHMgBr affords the eta(3)-pentatrienyl compound [Rh(eta(3)-CH(2)CHC[double bond]C[double bond]CPh(2))(PiPr(3))(2)] (6), which in the presence of CO rearranges to the eta(1)-pentatrienyl derivative trans-[Rh[eta(1)-C(CH[double bond]CH(2))[double bond]C[double bond]CPh(2)](CO)(PiPr(3))(2)] (7). Treatment of 7 with acetic acid generates the vinylallene CH(2)[double bond]CH[bond]CH[double bond]=C=CPh(2) (8). Compounds 1 and 2 react with HCl to give the five-coordinate allenylrhodium(III) complexes [RhCl(2)[CH[double bond]C[double bond]C(Ph)R](PiPr(3))(2)] (10, 11). An unusual [C(3) + C(2) + P] coupling process takes place upon treatment of 1 with terminal alkynes HC[triple bond]CR', leading to the formation of the eta(3)-allylic compounds [RhCl[eta(3)-anti-CH(PiPr(3))C(R')C[double bond]C[double bond]CPh(2)](PiPr(3))] [R' = Ph (12), p-Tol (13), SiMe(3) (14)]. From 12 and RMgBr the corresponding phenyl and vinyl rhodium(I) derivatives 15 and 16 have been obtained. The previously unknown unsaturated ylide iPr(3)PCHC(Ph)[double bond]C[double bond]C[double bond]CPh(2) (17) was generated from 12 and CO. A [C(3) + P] coupling process occurs on treatment of the rhodium allenylidenes 1, 2, and trans-[RhCl[[double bond]C[double bond]C[double bond]C(p-Anis)(2)](PiPr(3))(2)] (20) with either Cl(2) or PhICl(2), affording the ylide-rhodium(III) complexes [RhCl(3)[C(PiPr(3))C[double bond]C(R)R'](PiPr(3))] (21-23). The butatrienerhodium(I) compounds trans-[RhCl[eta(2)-H(2)C[double bond]C[double bond]C[double bond]C(R)R'](PiPr(3))(2)] (28-31) were prepared from 1, 20, and trans-[RhCl[[double bond]C[double bond]C[double bond]C(Ph)R](PiPr(3))(2)] [R = CF(3) (26), tBu (27)] and diazomethane; with the exception of 30 (R = CF(3), R' = Ph), they thermally rearrange to the isomers trans-[RhCl[eta(2)-H(2)C[double bond]C[double bond]C[double bond]C(R)R'](PiPr(3))(2)] (32, 33, and syn/anti-34). The new 1,1-disubstituted butatriene H(2)C[double bond]C[double bond]C[double bond]C(tBu)Ph (35) was generated either from 31 or 34 and CO. The iodo derivatives trans-[RhI(eta(2)-H(2)C[double bond]C[double bond]C[double bond]CR(2))(PiPr(3))(2)] [R = Ph (38), p-Anis (39)] were obtained by an unusual route from 1 or 20 and CH(3)I in the presence of KI. While the hydrogenation of 1 and 26 leads to the allenerhodium(I) complexes trans-[RhCl[eta(2)-H(2)C[double bond]C[double bond]C(Ph)R](PiPr(3))(2)] (40, 41), the thermolysis of 1 and 20 produces the rhodium(I) hexapentaenes trans-[RhCl(eta(2)-R(2)C[double bond]C[double bond]C[double bond]C[double bond]C[double bond]CR(2))(PiPr(3))(2)] (44, 45) via C-C coupling. The molecular structures of 3, 7, 12, 21, and 28 have been determined by X-ray crystallography.  相似文献   

3.
Reduction of [M(CO)2(eta-RC[triple bond]CR')Tp']X {Tp' = hydrotris(3,5-dimethylpyrazolyl)borate, M = Mo, X = [PF6]-, R = R' = Ph, C6H4OMe-4 or Me; R = Ph, R' = H; M = W, X = [BF4]-, R = R' = Ph or Me; R = Ph, R' = H} with [Co(eta-C5H5)2] gave paramagnetic [M(CO)2(eta-RC[triple bond]CR')Tp'], characterised by IR and ESR spectroscopy. X-Ray structural studies on the redox pair [Mo(CO)2(eta-PhC[triple bond]CPh)Tp'] and [Mo(CO)2(eta-PhC[triple bond]CPh)Tp'][PF6] showed that oxidation is accompanied by a lengthening of the C[triple bond]C bond and shortening of the Mo-C(alkyne) bonds, consistent with removal of an electron from an orbital antibonding with respect to the Mo-alkyne bond, and with conversion of the alkyne from a three- to a four-electron donor. Reduction of [Mo(CO)(NCMe)(eta-MeC[triple bond]CMe)Tp'][PF6] with [Co(eta-C5H5)2] in CH2Cl2 gives [MoCl(CO)(eta-MeC[triple bond]CMe)Tp'], via nitrile substitution in [Mo(CO)(NCMe)(eta-MeC[triple bond]CMe)Tp'], whereas a similar reaction with [M(CO){P(OCH2)3CEt}(eta-MeC[triple bond]CMe)Tp']+ (M = Mo or W) gives the phosphite-containing radicals [M(CO){P(OCH2)3CEt}(eta-MeC[triple bond]CMe)Tp']. ESR spectroscopic studies and DFT calculations on [M(CO)L(eta-MeC[triple bond]CMe)Tp'] {M = Mo or W, L = CO or P(OCH2)3CEt} show the SOMO of the neutral d5 species (the LUMO of the d4 cations) to be largely d(yz) in character although much more delocalised in the W complexes. Non-coincidence effects between the g and metal hyperfine matrices in the Mo spectra indicate hybridisation of the metal d-orbitals in the SOMO, consistent with a rotation of the coordinated alkyne about the M-C2 axis.  相似文献   

4.
This paper reports calculations that probe the role of R (hydrocarbon) and R' (ligand substituent) effects on the reaction coordinate for C [bond] H activation: Ti(OR')(2)(=NR') + RH --> adduct --> transition state --> (OR')(2)Ti(N(H)R')(R). Compounds with R = H, Me, Et, Vy, cPr, Ph, Cy, Bz, and cubyl are studied using quantum (R' = H, SiH(3), SiMe(3)) and classical (R' = Si(t)Bu(3)) techniques. Calculated geometries are in excellent agreement with data for experimental models. There is little variability in the calculated molecular structure of the reactants, products, and most interestingly, transition states as R and R' are changed. Structural flexibility is greatest in the adducts Ti(OR')(2)(=NR')...HR. Despite the small structural changes observed for Ti(OR')(2)(double bond] NR') with different R', significant changes are manifested in calculated electronic properties (the Mulliken charge on Ti becomes more positive and the Ti [double bond] N bond order decreases with larger R'), changes that should facilitate C [bond] H activation. Substantial steric modification of the alkane complex is expected from R [bond] R' interactions, given the magnitude of Delta G(add) and the conformational flexibility of the adduct. Molecular mechanics simulations of Ti(OSi(t)Bu(3))(2)([double bond] NSi(t)Bu(3))...isopentane adducts yield an energy ordering as a function of the rank of the C [bond] H bond coordinated to Ti that is consistent with experimental selectivity patterns. Calculated elimination barriers compare very favorably with experiment; larger SiH(3) and TMS ligand substituents generally yield better agreement with experiment, evidence that the modeling of the major contributions to the elimination barrier (N [bond] H and C [bond] H bond making) is ostensibly correct. Calculations indicate that weakening the C [bond] H bond of the hydrocarbon yields a more strongly bound adduct. Combining the different conclusions, the present computational research points to the adduct, specifically the structure and energetics of the substrate/Ti-imido interaction, as the main factor in determining the selectivity of hydrocarbon (R) C [bond] H activation.  相似文献   

5.
A detailed mechanistic study of arene C [bond] H activation in CH(2)Cl(2) solution by Cp(L)IrMe(X) [L = PMe(3), P(OMe)(3); X = OTf, (CH(2)Cl(2))BAr(f); (BAr(f) = B[3,5-C(6)H(3)(CF(3))(2)](4))(-)] is presented. It was determined that triflate dissociation in Cp(L)IrMe(OTf), to generate tight and/or solvent-separated ion pairs containing a cationic iridium complex, precedes C [bond] H activation. Consistent with the ion-pair hypothesis, the rate of arene activation by Cp(L)IrMe(OTf) is unaffected by added external triflate salts, but the rate is strongly dependent upon the medium. Thus the reactivity of Cp(PMe(3))IrMe(OTf) can be increased by almost 3 orders of magnitude by addition of (n-Hex)(4)NBAr(f), presumably because the added BAr(f) anion exchanges with the OTf anion in the initially formed ion pair, transiently forming a cation/borate ion pair in solution (special salt effect). In contrast, addition of (n-Hex)(4)NBAr(f) to [CpPMe(3)Ir(Me)CH(2)Cl(2)][BAr(f)] does not affect the rate of benzene activation; here there is no initial covalent/ionic pre-equilibrium that can be perturbed with added (n-Hex)(4)NBAr(f). An analysis of the reaction between Cp(PMe(3))IrMe(OTf) and various substituted arenes demonstrated that electron-donating substituents on the arene increase the rate of the C [bond] H activation reaction. The rate of C(6)H(6) activation by [Cp(PMe(3))Ir(Me)CH(2)Cl(2)][BAr(f)] is substantially faster than [Cp(P(OMe)(3))Ir(Me)CH(2)Cl(2)][BAr(f)]. Density functional theory computations suggest that this is due to a less favorable pre-equilibrium for dissociation of the dichloromethane ligand in the trimethyl phosphite complex, rather than to a large electronic effect on the C [bond] H oxidative addition transition state. Because of these combined effects, the overall rate of arene activation is increased by electron-donating substituents on both the substrate and the iridium complex.  相似文献   

6.
The first carbonyl free ruthenium/low valent Group 13 organyl complexes are presented, obtained by insertion of ER (ER = GaCp*, InCp*, In[C(SiMe(3))(3)]) into the Ru-Cl bonds of [(p-cymene)RuCl2]2, [Cp*RuCl]4 and [Cp*RuCl2]2. The compound [(p-cymene)RuCl2]2 reacts with GaCp*, giving a variety of isolated products depending on the reaction conditions. The Ru-Ru dimers [{(p-cymene)Ru}2(GaCp*)4(mu3-Cl)2] and the intermediate [{(p-cymene)Ru}2(mu-Cl)2] were isolated, as well as monomeric complexes [(p-cymene)Ru(GaCp*)3Cl2], [(p-cymene)Ru(GaCp*)2GaCl3] and [(p-cymene)Ru(GaCp*)2Cl2(DMSO)]. The reaction of [Cp*RuCl]4 with ER gives "piano-stool" complexes of the type [Cp*Ru(ER)3Cl](ER = InCp*, In[C(SiMe3)3], GaCp*. The chloride ligand in complex can be removed by NaBPh4, yielding [Cp*Ru(GaCp*)3]+[BPh4]-. The reaction of [Cp*RuCl2]2 with GaCp* however, does not lead to an insertion product, but to the ionic Ru(II) complex [Cp*Ru(GaCp*)3]+[Cp*GaCl3]-. The ER ligands in complexes 3, 5, 6, 7 and 8 are equivalent on the NMR timescale in solution due to a chloride exchange between the three Group 13 atoms even at low temperatures. The solid state structures, however, exhibit a different structural pattern. The chloride ligands exhibit two coordination modes: either terminal or bridging. The new compounds are fully characterized including single crystal X-ray diffraction. These results point out the different reactivities of the two precursors and the nature of the neutral p-cymene and the anionic Cp* ligand when bonding to a Ru(II) centre.  相似文献   

7.
Reactions of imido complexes [M(Cp)(=NR')(PR'3)2] (M=V, Nb) with silanes afford a plethora of products, depending on the nature of the metal, substitution at silicon and nitrogen and the steric properties of the phosphine. The main products are [M(Cp)(=NR')(PR3)(H)(SiRnCl3-n)] (M=V, Nb; R'=2,6-diisopropylphenyl (Ar), 2,6-dimethylphenyl (Ar')), [Nb(Cp)(=NR')(PR'3)(H)(SiPhR2)] (R2=MeH, H2), [Nb(Cp)(==NR')(PR'3)(Cl)(SiHRnCl2-n)] and [Nb(Cp)(eta 3-N(R)SiR2--H...)(PR'3)(Cl)]. Complexes with the smaller Ar' substituent at nitrogen react faster, as do more acidic silanes. Bulkier groups at silicon and phosphorus slow down the reaction substantially. Kinetic NMR experiments supported by DFT calculations reveal an associative mechanism going via an intermediate N-silane adduct [Nb(Cp){=N(-->SiHClR2)R'}(PR'3)2] bearing a penta-coordinate silicon centre, which then rearranges into the final products through a Si--H or Si--Cl bond activation process. DFT calculations show that this imido-silane adduct is additionally stabilized by a Si--HM agostic interaction. Si--H activation is kinetically preferred even when Si--Cl activation affords thermodynamically more stable products. The niobium complexes [NbCp(=NAr)(PMe3)(H)(SiR2Cl)] (R=Ph, Cl) are classical according to X-ray studies, but DFT calculations suggest the presence of interligand hypervalent interactions (IHI) in the model complex [Nb(Cp) (==NMe)(PMe3)(H)(SiMe2Cl)]. The extent of Si--H activation in the beta-Si--HM agostic complexes [Cp{eta 3-N(R')SiR2--H}M(PR'3)(Cl)] (R'=PMe3, PMe2Ph) primarily depends on the identity of the ligand trans to the Si--H bond. A trans phosphine leads to a stronger Si--H bond, manifested by a larger J(Si--H) coupling constant. The Si--H activation diminishes slightly when a less basic phosphine is employed, consistent with decreased back-donation from the metal.  相似文献   

8.
A series of iridium and rhodium complexes that feature M-->B dative bonds, namely [kappa(3)-B,S,S-B(mim(R))3]Ir(CO)(PPh3)H (R = But, Ph) and [kappa4-B(mim(Bu)t)3]M(PPh3)Cl (M = Rh, Ir), has been synthesized via (i) the reactions of Ir(PPh3)2(CO)Cl with [Tm(Bu)t]Tl and [Tm(Ph)]Li and (ii) the reactions of (COD)M(PPh3)Cl with [Tm(Bu)t]K. The complexes have been structurally characterized by X-ray diffraction, thereby demonstrating the presence of a M-->B dative bond in each complex. The nature of the M-->B interaction in these complexes has been addressed by computational methods which indicate that the metal centers possess a d(6) configuration. The d(6) configuration is in accord with the value predicted by using a method that employs the valence to determine d(n)(), but is not in accord with the d8 configuration that is predicted using the oxidation number. Thus, even though B(mim(R))3 may be regarded as a neutral closed-shell ligand, coordination to a d(n) transition metal via the boron results in the formation of a complex in which the metal center possesses a d(n-2) configuration.  相似文献   

9.
The anionic oxophosphinidene complexes (H-DBU)[MCp{P(O)R*}(CO)(2)] (M = Mo, W; R* = 2,4,6-C(6)H(2)(t)Bu(3); Cp = η(5)-C(5)H(5), DBU = 1,8-diazabicyclo [5.4.0] undec-7-ene) displayed multisite reactivity when faced with different electrophilic reagents. The reactions with the group 14 organochloride compounds ER(4-x)Cl(x) (E = Si, Ge, Sn, Pb) led to either phosphide-like, oxophosphinidene-bridged derivatives [MCp{P(OE')R*}(CO)(2)] (E' = SiMe(3), SiPh(3), GePh(3), GeMe(2)Cl) or to terminal oxophosphinidene complexes [MCp{P(O)R*}(CO)(2)(E')] (E' = SnPh(3), SnPh(2)Cl, PbPh(3); Mo-Pb = 2.8845(4) ? for the MoPb compound). A particular situation was found in the reaction with SnMe(3)Cl, this giving a product existing in both tautomeric forms, with the phosphide-like complex [MCp{P(OSnMe(3))R*}(CO)(2)] prevailing at room temperature and the tautomer [MCp{P(O)R*}(CO)(2)(SnMe(3))] being the unique species present below 203 K in dichloromethane solution. The title anions also showed a multisite behavior when reacting with transition-metal based electrophiles. Thus, the reactions with the complexes [M'Cp(2)Cl(2)] (M' = Ti, Zr) gave phosphide-like derivatives [MCp{P(OM')R*}(CO)(2)] (M = Mo, M' = TiCp(2)Cl, ZrCp(2)Cl; M = W, M' = ZrCp(2)Cl), displaying a bridging κ(1),κ(1)-P,O- oxophosphinidene ligand connecting MCp(CO)(2) and M'Cp(2)Cl metal fragments (W-P = 2.233(1) ?, O-Zr = 2.016(4) ? for the WZr compound]. In contrast, the reactions with the complex [AuCl{P(p-tol)(3)}] gave the metal-metal bonded derivatives trans-[MCp{P(O)R*}(CO)(2){AuP(p-tol)(3)}] (M = Mo, W; Mo-Au = 2.7071(7) ?). From all the above results it was concluded that the terminal oxophosphinidene complexes are preferentially formed under conditions of orbital control, while charge-controlled reactions tend to give derivatives with the electrophilic fragment bound to the oxygen atom of the oxophosphinidene ligand (phosphide-like, oxophosphinidene-bridged derivatives).  相似文献   

10.
Herein we describe different C-C coupling reactions of permethyltitanocene and -zirconocene with disubstituted 1,3-butadiynes. The outcomes of these reactions vary depending on the metals and the diyne substituents. The reduction of [Cp2*MCl2] (Cp* = C5Me5; M = Ti, Zr) with Mg in the presence of disubstituted butadiynes RC triple bond C-C triple bond CR' is suitable for the synthesis of different C-C coupling products of the diyne and the permethylmetallocenes, and provides a new method for the generation of functionalized pentamethyl-cyclopentadienyl derivatives. For M = Zr and R = R' = tBu, the reaction gives, by a twofold activation of one pentamethylcyclopentadienyl ligand, the complex [Cp*Zr[-C(=C=CHtBu)-CHtBu-CH2-eta5-C5Me3-CH2-]] (3), containing a fulvene ligand that is coupled to the modified substrate (allenic subunit). When using the analogous permethyltitanocene fragment "Cp2*Ti", the reaction depends strongly on the substituents R and R'. The coupling product of the butadiyne with two methyl groups of one of the pentamethylcyclopentadienyl ring systems, [Cp*Ti[eta5-C5Me3-(CH2-CHR-eta2-C2-CHR'-CH2)]], is obtained with R = R' = tBu (4) and R = tBu, R' = SiMe3 (5). In these complexes one pentamethylcyclopentadienyl ligand is annellated to an eight-membered ring with a C-C triple bond, which is coordinated to the titanium center. A different activation of both pentamethylcyclopentadienyl ligands is observed for R = R' = Me, resulting in the complex [[eta5-C5Me4(CH2)-]Ti[-C(=CHMe)-C(=CHMe)-CH2-eta5-C5Me4]] (6), which displays a fulvene as well as a butadienyl-substituted pentamethylcyclopentadienyl ligand. The influence exerted by the size of the metal is illustrated in the reaction of [Cp2*ZrCl2] with MeC triple bond C-C triple bond CMe. Here the five-membered metallacyclocumulene complex [Cp2*Zr(eta4-1,2,3,4-MeC4Me)] (7) is obtained. The reaction paths found for R = R' = Me are identical to those formerly described for R = R' = Ph.  相似文献   

11.
The reactions of [Cp*Fe(mu-SR1)3FeCp*] (Cp* = eta5-C5Me5; R1 = Et, Me) with 1.5 equiv R2NHNH2 (R2 = Ph, Me) give the mu-eta2-diazene diiron thiolate-bridged complexes [Cp*Fe(mu-SR1)2(mu-eta2-R2N NH)FeCp*], along with the formation of PhNH2 and NH3. These mu-eta2-diazene diiron thiolate-bridged complexes exhibit excellent catalytic N-N bond cleavage of hydrazines under ambient conditions.  相似文献   

12.
The organochalcogen ligands derived from 3-methyl-imidazole-2-thione/selone groups, Mbit, Mbis, Ebit and Ebis [Mbit = 1,1'-methylenebis(3-methyl-imidazole-2-thione); Mbis = 1,1'-methylenebis(3-methyl-imidazole-2-selone), Ebit = 1,1'-(1,2-ethanediyl)bis(3-methyl-imidazole-2-thione), Ebis = 1,1'-(1,2-ethanediyl)bis(3-methyl-imidazole-2-selone)] have been synthesized and characterized. Reactions of [Cp*Ir(micro-Cl)Cl]2 and [Cp*Rh(micro-Cl)Cl]2 (Cp* = eta5-pentamethylcyclopentadienyl) with Mbit, Mbis, Ebit and Ebis result in the formation of the complexes [Cp*Ir(Mbit)Cl]Cl 1a x Cl), [Cp*Ir(Mbis)Cl]Cl (3a x Cl), [Cp*Ir(Ebit)Cl]Cl (1b x Cl), [Cp*Ir(Ebis)Cl]Cl (2a x Cl), [Cp*Rh(Mbit)Cl]Cl (2b x Cl), Cp*Rh(Mbis)Cl][Cp*RhCl(3)] (3b x[Cp*RhCl(3)]), [Cp*Rh(Ebit)Cl]Cl (4a x Cl) and [Cp*Rh(Ebis)Cl]Cl (4b x Cl), respectively. All compounds have been characterized by elemental analysis, NMR and IR spectra. The molecular structures of 1b, 2b, 3a, 3b and 4a have been determined by X-ray crystallography. After activation with methylaluminoxane (MAO), the iridium complexes exhibit moderate activities for the vinyl polymerization of norbornene.  相似文献   

13.
The unsaturated complexes [W2Cp2(mu-PR2)(mu-PR'2)(CO)2] (Cp = eta5-C5H5; R = R' = Ph, Et; R = Et, R' = Ph) react with HBF4.OEt2 at 243 K in dichloromethane solution to give the corresponding complexes [W2Cp2(H)(mu-PR2)(mu-PR'2)(CO)2]BF4, which contain a terminal hydride ligand. The latter rearrange at room temperature to give [W2Cp2(mu-H)(mu-PR2)(mu-PR'2)(CO)2]BF4, which display a bridging hydride and carbonyl ligands arranged parallel to each other (W-W = 2.7589(8) A when R = R' = Ph). This explains why the removal of a proton from the latter gives first the unstable isomer cis-[W2Cp2(mu-PPh2)2(CO)2]. The molybdenum complex [Mo2Cp2(mu-PPh2)2(CO)2] behaves similarly, and thus the thermally unstable new complexes [Mo2Cp2(H)(mu-PPh2)2(CO)2]BF4 and cis-[Mo2Cp2(mu-PPh2)2(CO)2] could be characterized. In contrast, related dimolybdenum complexes having electron-rich phosphide ligands behave differently. Thus, the complexes [Mo2Cp2(mu-PR2)2(CO)2] (R = Cy, Et) react with HBF4.OEt2 to give first the agostic type phosphine-bridged complexes [Mo2Cp2(mu-PR2)(mu-kappa2-HPR2)(CO)2]BF4 (Mo-Mo = 2.748(4) A for R = Cy). These complexes experience intramolecular exchange of the agostic H atom between the two inequivalent P positions and at room-temperature reach a proton-catalyzed equilibrium with their hydride-bridged tautomers [ratio agostic/hydride = 10 (R = Cy), 30 (R = Et)]. The mixed-phosphide complex [Mo2Cp2(mu-PCy2)(mu-PPh2)(CO)2] behaves similarly, except that protonation now occurs specifically at the dicyclohexylphosphide ligand [ratio agostic/hydride = 0.5]. The reaction of the agostic complex [Mo2Cp2(mu-PCy2)(mu-kappa2-HPCy2)(CO)2]BF4 with CN(t)Bu gave mono- or disubstituted hydride derivatives [Mo2Cp2(mu-H)(mu-PCy2)2(CO)2-x(CNtBu)x]BF4 (Mo-Mo = 2.7901(7) A for x = 1). The photochemical removal of a CO ligand from the agostic complex also gives a hydride derivative, the triply bonded complex [Mo2Cp2(H)(mu-PCy2)2(CO)]BF4 (Mo-Mo = 2.537(2) A). Protonation of [Mo2Cp2(mu-PCy2)2(mu-CO)] gives the hydroxycarbyne derivative [Mo2Cp2(mu-COH)(mu-PCy2)2]BF4, which does not transform into its hydride isomer.  相似文献   

14.
The synthesis, structures, and unusual reactivity of (C5R5)2ZrR'(ClPh)+ chlorobenzene complexes are described. The reaction of (C5R5)2ZrR'2 with [Ph3C][B(C6F5)4] in C6D5Cl affords [(C5R5)2ZrR'(ClC6D5)][B(C6F5)4] chlorobenzene complexes (1-d5, R' = CH2Ph and (C5R5)2 = (C5H5)2; 2a-d-d5, R' = Me and (C5R5)2 = rac-(1,2-ethylene(bis)indenyl) (2a), (C5H5)2 (2b), (C5H4Me)2 (2c), (C5Me5)2 (2d, C5Me5 = Cp*)). Complexes 1 and 2b,c are thermally robust but are converted to [{(C5R5)2Zr(mu-Cl)}2][B(C6F5)4]2 (4b,c) by a photochemical process in ClPh solution. In contrast, 2d undergoes facile thermal ortho-C-H activation to yield [Cp*2Zr(eta2-C,Cl-2-Cl-C6H4)][B(C6F5)4] (5), which slowly rearranges to [(eta4,eta1-C5Me5C6H4)Cp*ZrCl][B(C6F5)4] (6) via beta-Cl elimination and benzyne insertion into a Zr-CCp* bond. The higher thermal reactivity of 2d versus that of 1 and 2b,c is attributed to steric crowding associated with the Cp* ligands of 2d, which forces a ClPh ortho-hydrogen close to the Zr-Me group.  相似文献   

15.
Rhodium(III) and iridium(III) complexes containing bis(pyrazolyl)methane ligands (pz = pyrazole, L' in general; specifically, L1 = H2C(pz)2, L2 = H2C(pzMe2)2, L3 = H2C(pz4Me)2, L4 = Me2C(pz)2), have been prepared in a study exploring the reactivity of these ligands toward [Cp*MCl(mu-Cl)]2 dimers (M = Rh, Ir; Cp* = pentamethylcyclopentadienyl). When the reaction was carried out in acetone solution, complexes of the type [Cp*M(L')Cl]Cl were obtained. However, when L1 and L2 ligands have been employed with excess [Cp*MCl(mu-Cl)]2, the formation of [Cp*M(L')Cl][Cp*MCl3] species has been observed. PGSE NMR measurements have been carried out for these complexes, in which the counterion is a cyclopentadienyl metal complex, in CD2Cl2 as a function of the concentration. The hydrodynamic radius (rH) and, consequently, the hydrodynamic volume (VH) of all the species have been determined from the measured translational self-diffusion coefficients (Dt), indicating the predominance of ion pairs in solution. NOE measurements and X-ray single-crystal studies suggest that the [Cp*MCl3]- approaches the cation, orienting the three Cl-legs of the "piano-stool" toward the CH2 moieties of the bis(pyrazolyl)methane ligands. The reaction of 1 equiv of [Cp*M(L')Cl]Cl or [Cp*M(L')Cl][Cp*MCl3] with 1 equiv of AgX (X = ClO4 or CF3SO3) in CH2Cl2 allows the generation of [Cp*M(L')Cl]X, whereas the reaction of 1 equiv of [Cp*M(L')Cl] with 2 equiv of AgX yields the dicationic complexes [Cp*M(L')(H2O)][X]2, where single water molecules are directly bonded to the metal atoms. The solid-state structures of a number of complexes were confirmed by X-ray crystallographic studies. The reaction of [Cp*Ir(L')(H2O)][X]2 with ammonium formate in water or acetone solution allows the generation of the hydride species [Cp*Ir(L')H][X].  相似文献   

16.
The properties of the 16-electron phosphinidene complex [CpRIr=PR] were investigated experimentally and theoretically. Density functional theory calculations show a preferred bent geometry for the model complex [CpIr=PH], in contrast to the linear structure of [CpIr=NH]. Dimerization to give [[CpIr=PH]2] and ligand addition to afford [Cp(L)Ir=PH] (L=PH3, CO) were calculated to give compounds that were energetically highly favorable, but which differed from the related imido complexes. Transient 16-electron phosphinidene complex [Cp*Ir=PAr] could not be detected experimentally. Dehydrohalogenation of [Cp*IrCl2(PH2Ar)] in CH2Cl2 at low temperatures resulted in the novel fused-ring systems 17 (Ar=Mes*) and 20 (Ar=Mes), with dimeric [[Cp*Ir=PAr]2] being the likely intermediate. Intramolecular C-H bond activation induced by steric factors is considered to be the driving force for the irreversible formation of 17 and 20. ONIOM calculations suggest this arises because of the large steric congestion in [[Cp*Ir=PAr]2], which forces it toward a more reactive planar structure that is apt to rearrange.  相似文献   

17.
Reduction of Cp*WCl4 afforded the metalated complex (eta6-C5Me4CH2)(dmpe)W(H)Cl (1) (Cp* = C5Me5, dmpe = 1,2-bis(dimethylphosphino)ethane). Reactions with CO and H(2) suggested that 1 is in equilibrium with the 16-electron species [Cp(dmpe)WCl], and 1 was also shown to react with silanes R2SiH2 (R2 = Ph2 and PhMe) to give the tungsten(IV) silyl complexes Cp*(dmpe)(H)(Cl)W(SiHR2) (6a, R2 = Ph2; 6b, R2 = PhMe). Abstraction of the chloride ligand in 1 with LiB(C6F5)4 gave a reactive species that features a doubly metalated Cp ligand, [(eta7-C5Me3(CH2)2)(dmpe)W(H)2][B(C6F5)4] (4). In its reaction with dinitrogen, 4 behaves as a synthon for the 14-electron fragment [Cp*(dmpe)W]+, to give the dinuclear dinitrogen complex ([Cp*(dmpe)W]2(micro-N2)) [B(C6F5)4]2 (5). Hydrosilanes R2SiH2 (R2 = Ph2, PhMe, Me2, Dipp(H); Dipp = 2,6-diisopropylphenyl) were shown to react with 4 in double Si-H bond activation reactions to give the silylene complexes [Cp*(dmpe)H2W = SiR2][B(C6F5)4] (8a-d). Compounds 8a,b (R2 = Ph2 and PhMe, respectively) were also synthesized by abstraction of the chloride ligands from silyl complexes 6a,b. Dimethylsilylene complex 8c was found to react with chloroalkanes RCl (R = Me, Et) to liberate trialkylchlorosilanes RMe2SiCl. This reaction is discussed in the context of its relevance to the mechanism of the direct synthesis for the industrial production of alkylchlorosilanes.  相似文献   

18.
The prototype hetero-binuclear complexes containing metal-metal bonds, {CpRh[E2C2(B10H10)]}[Fe(CO)3] (Cp = Cp* = eta 5-Me5C5, E = S(5a), Se(5b); Cp = Cp = eta 5-1,3-tBu2C5H3, E = S(6a), Se(6b)) and {CpCo[E2C2(B10H10)]}[Fe(CO)3] (Cp = Cp* = eta 5-Me5C5, E = S(7a), Se(7b); Cp = Cp = eta 5-C5H5, E = S(8a), Se(8b)) were obtained from the reactions of 16-electron complexes CpRh[E2C2(B10H10)] (Cp = Cp*, E = S(1a), Se(1b); Cp = Cp, E = S(2a), Se(2b)), CpCo[E2C2(B10H10)] (Cp = Cp*, E = S(3a), Se(3b); Cp = Cp, E = S(4a), Se(4b)) with Fe(CO)5 in the presence of Me3NO. The molecular structures of {Cp*Rh[E2C2(B10H10)]}[Fe(CO)3] (E = S(5a), Se(5b)), {CpRh[S2C2(B10H10)]}[Fe(CO)3] (6a) {Cp*Co[S2C2(B10H10)]}[Fe(CO)3] (7a) and {CpCo[S2C2(B10H10)]}[Fe(CO)3] (8a) have been determined by X-ray crystallography. All these complexes were characterized by elemental analysis and IR and NMR spectra.  相似文献   

19.
Treatment of Li[BH3ER] (E=Se or Te, R=Ph; E=S, R=CH2Ph) with [Cp*CoCl]2 led to the formation of hydridoborate complexes, [{CoCp*Ph}{Cp*Co}{μ-EPh}{μ-κ2-E,H-EBH3}], 1a and 1 b ( 1 a : E=Se; 1 b : E=Te) and a bis-hydridoborate species [Cp*Co{μ-κ2-Se,H-SeBH3}]2, 2 . All the complexes, 1 a , 1 b and 2 are stabilized by β-agostic type interaction in which 1 b represents a novel bimetallic borate complex with a rare B−Te bond. QTAIM analysis furnished direct proof for the existence of a shared and dative B-chalcogen and Co-chalcogen interactions, respectively. In parallel to the formation of the hydridoborate complexes, the reactions also yielded tetracyclic species, [Cp*Co{κ3-E,H,H-E(BH2)2-C5Me5H3}], 3 a and 3 b ( 3 a : E=Se and 3 b : E=S), wherein the bridgehead boron atoms are surrounded by one chalcogen, one cobalt and two carbon atoms of a cyclopentane ring. Molecules 3 a and 3 b are best described as the structural mimic of tetracyclo[4.3.0.02,4.03,5]nonane having identical structure and similar valence electron counts.  相似文献   

20.
A series of mixed Cp* amidate tantalum complexes Cp*Ta(RNC(O)R')X(3) (where R = Me(2)C(6)H(3), (i)Pr, R' = (t)Bu, Ph, X = Cl, Me) have been prepared via salt metathesis and their fundamental reactivities under reducing conditions have been explored. Reaction of the tantalum chloro precursors with potassium graphite under N(2) or Ar leads to the stereoselective formation of the terminal tantalum oxo species, Cp*Ta=O(η(2)-RN=CR')Cl. This represents the formal extrusion of oxygen from the amidate ligand to the reduced tantalum center and is accompanied by the formation of the iminoacyl fragment bound to Ta(v). Amidate dinitrogen complexes, [Cp*TaCl(RNC(O)(t)Bu)](2)(μ-N(2)) (where R = Me(2)C(6)H(3), (i)Pr) were synthesized via salt metathesis from the known [Cp*TaCl(2)](2)(μ-N(2)) precursor, establishing that amidate ligands can support dinitrogen complexes, but not the reduction process often necessary for their synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号