首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
The in vitro microsomal metabolism of JWH-015, a ligand that exhibits a high binding affinity at the peripheral cannabinoid receptor CB2, has been studied. A total of 22 metabolites were identified and structurally characterized. The metabolites are products of: 1) monohydroxylation on the naphthalene ring (m/z 344, M20 and M21), indole ring (m/z 344, M17 and M18), or the N-alkyl group (m/z 344, M14); 2) arene oxidation leading to dihydrodiols (m/z 362, M12 and M15); 3) dihydroxylation on the naphthalene ring (m/z 360, M7) or indole ring (m/z 360, M13), resulting from a combination of monohydroxylations on both the naphthalene and indole rings (m/z 360, M16), or a combination of monohydroxylations on the naphthalene ring and on the N-propyl group (m/z 360, M9); 4) trihydroxylation (m/z 378, M1, M3, M4, M6, and M10); 5) N-dealkylation (m/z 286, M19); 6) N-dealkylation and monohydroxylation on the naphthalene ring (m/z 302, M11); 7) N-dealkylation and dihydrodiol formation from arene oxidation (m/z 320, M2 and M5); 8) dehydrogenation after monohydroxylation on the N-alkyl group (m/z 326, M22); 9) dehydrogenation and monohydroxylation on the indole ring (m/z 342, M8).  相似文献   

2.
Abstract

A stereocontrolled synthesis of I-active ganglioside analog is described. Glycosylation of 2-(trimethylsilyl)ethyl O-(2-O-benzyl-4,6-O-benzylidene-β-d-galactopyranosyl)-(1 → 4)-2,3,6-tri-O-benzyl-β-d-glucopyranoside (5) with methyl 4-O-acetyl-1,6-di-O-benzyl-2-deoxy-2-phthalimido-1-thio-β-d-glucopyranoside (10) by use of N-iodosuccinimide (NIS)-trifluoromethanesulfonic acid (TfOH) gave the desired trisaccharide 11, which was transformed into trisaccharide acceptor 14 via removal of the phthaloyl group followed by N-acetylation, and debenzylidenation. Glycosylation of 14 with methyl 3-O-benzyl-4,6-O-benzylidene-2-deoxy-2-phthalimido-1-thio-β-d-glucopyranoside (8) gave the biantennary compound 15, which was transformed into the acceptor 16. Dimethyl(methylthio)sulfonium triflate (DMTST)-promoted coupling of 16 with methyl O-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-d-glycero-α-d-galacto-2-nonulopyranosylonate)-(2→3)-2,4,6-tri-O-benzoyl-1-thio-β-d-galactopyranoside (17) afforded the desired hexasaccharide 19. Coupling of the hexasaccharide acceptor 20, prepared from 19 by reductive ring-opening of benzylidene acetal, with 17 gave octasaccharide derivative 21. Compound 21 was transformed, via removal of the benzyl group followed by O-acetylation, selective removal of the 2-(trimethylsilyl)ethyl group and subsequent imidate formation, into the final glycosyl donor 24. Condensation of 24 with (2S, 3R, 4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol (18) gave the β-glycoside 25, which on channeling through selective reduction of azido group, coupling of the amino group with octadecanoic acid, O-deacylation and saponification of the methyl ester group, gave the title compound 28.  相似文献   

3.
Synthesis of two isomeric tetrasaccharides, β-D-Glup-(1→2)-α-L-Rhap-(1→3)-α-L- Rhap-(1→2)-α-L-Rhap (I) and β-D-Glup-(1→3)-α-L-Rhap-(1→3)-α-L-Rhap-(1→3)-α-L-Rhap (II), the repeating units from the lipopolysaccharides of the nitrogen-fixing bacterium Azospirillum brasilense S17 and Azospirillum lipoferum SR65, was achieved via assembly of the building blocks 2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl trichloroacetimidate (2), p-methoxyphenyl 3,4-di-O-benzoyl-α-L-rhamnopyranoside (3), 3-O-allyloxycarbonyl-2,4-di-O-benzoyl-α-L-rhamnopyranosyl trichloroacetimidate (6), 2,3,4,6-tetra-O-benzoyl-β-D-glucopyranosyl trichloroacetimidate (8), and p-methoxy phenyl 2,4-di-O-benzoyl-α-L-rhamnopyranoside (14). Condensation of 3 with 6 or 8 provided the disaccharides 9 or 11, respectively. Deallyloxycarbonylation of 11 gave the disaccharide aceptor 12, while removal of the p-methoxyphenyl group in 9 followed by trichloroacetimidation of the anomeric hydroxyl group afforded the disaccharide donor 10. Meanwhile, disaccharide donor 16 and acceptor 18 were prepared from 6, 8, and 14 similarly. Finally, condensation of 10 with 12 or 16 with 18, followed by deprotection, gave the target tetrasaccharides I or II, respectively.  相似文献   

4.
A new alkaloid, (10E, 12E)-9-ureidooctadeca-10, 12-dienoic acid, named oleraurea (1) and 10 known compounds, p-hydroxybenzaldehyde (2), p-hydroxybenzoic acid (3), p-hydroxyacetophenone (4), benzamide (5), (E)-p-coumaramide (6), (E)-ferulamide (7), soyalkaloid A (8), β-carboline-3-carboxylic acid (9), 2, 3, 4, 9-tetrahydro-1H-pyrido [3, 4-b] indole-3-carboxylic acid (10), (1S, 3S)-1-methyl-1, 2, 3, 4-tetrahydro-β-carboline-3-carboxylic acid (11) were obtained from Portulaca oleracea L., in which, compounds 4, 5, 8–11 were isolated from the plant for the first time. The structure of the compound 1 was identified using spectroscopic methods including 1D and 2D NMR, HR-ESI-TOF-MS. The compounds 1, 5–11 presented anticholinesterase activities, but the P. oleracea extract (POE) presented very low anticholinesterase activity.  相似文献   

5.

Reaction of potassium tetrachloroaurate(III), KAuCl4, with 2-pyridinecarboxaldehyde (2CHO-py) have been examined in protic HX (X=OH, OMe, OEt, OCH2CH2CH2, OCH2CH2CH2CH3, OCH2CF3) solvents. Compounds in which the pyridine ligand is N or N-O coordinated in a newly carbonyl hydrated or in semi- and acetal-forms, derived by addition of one or two hydroxylic molecules, have been isolated; these include dichloro[pyridine-2(α-hydroxymethanolato)]gold(III) (1), dichloro[pyridine-2(α-ethoxymethanolato)] gold(III) (2), dichloro[pyridine-2[α-(2,2,2-trifluoroethoxymethanolato)]gold(III) (3), trichloro(2-pyridinecarboxaldehyde dimethyl acetal)gold(III) (4), trichloro(2-pyridinecarboxaldehyde diethyl acetal)gold(III) (5), trichloro(2-pyridinecarboxaldehyde di-1-propyl acetal)gold(III) (6) and trichloro(2-pyridinecarboxaldehyde di-1-butyl acetal)gold(III) (7). The crystal and molecular structures of (2), (5) and (7) have been determined by X-ray methods. Compound (2) crystallizes in space group Pna21 with Z=4, a=7.8914(4), b=17.3660(4) and c=8.3873(5)Å; (5) crystallizes in space group P&1macr; with Z=2, a=7.7779(3), b=8.2878(2) and c=13.3202(6)Å, α=96.975(2), β=95.096(2), γ=115.027(2)°; (7) crystallizes in space group P21/a with Z=4, a=14.5438(12), b=8.9865(7) and c=15.0362(11)Å.  相似文献   

6.
Abstract

10-O-(R/S)Tetrahydropyranosyl-β-rhodomycinone (5a,b) was prepared via 7,9-O-phenylboronyl-β-rhodomycinone (3) from β-rhodomycinone (1). Glycosidation of 5a,b with 3,4-di-O-acetyl-1,5-anhydro-2,6-dideoxy-L-arabino-hex-1-enitol (3,4-di-O-acetyl-L-rhamnal) (6) and 3,4-di-O-acetyl-1,5-anhydro-2,6-dideoxy-L-lyxo-hex-1-enitol (3,4-di-O-acetyl-L-fucal) (7) using N-iodosuccinimide gave the corresponding 7-O-glycosyl-β-rhodomycinones 8a,b, 9a,b and 10a,b, 11a,b. After cleavage of the THP-ether and O-deacetylation 7-O-(2,6-dideoxy-2-iodo-α-L-manno-hexopyranosyl)-β-rhodomycinone (14) and 7-O-(2,6-dideoxy-2-iodo-α-L-talo-hexopyranosyl)-β-rhodomycinone (16) were obtained.  相似文献   

7.
Three novel hydrated borates Ba2B5O9(OH) (1), Sr2B5O9(OH) (2) and Li2Sr8B22O41(OH)2 (3) have been synthesized hydrothermally and their structures determined. Compounds (1) and (2) are isostructural, crystallizing in space group P21/c and having lattice parameters of a=6.6330(13) Å, b=8.6250(17) Å, c=14.680(3) Å, β=93.46(3)° and a=6.4970(13) Å, b=8.4180(17) Å, c=14.177(3) Å, β=94.35(3)°, respectively. Compound (3) crystallizes in P-1 with lattice parameters of a=6.4684(13) Å, b=8.4513(17) Å, c=14.881(3) Å, α=101.21(3)°, β=93.96(3)°, γ=90.67(3)°. While similar in their axis lengths, (3) differs greatly in structure and formulation from (1) and (2). The structure of (1) and (2) is contrasted to that of the well-known mineral hilgardite (Ca2B5O9Cl·H2O).  相似文献   

8.
A new 9,10-dihydrophenanthrene,1,5-dihydroxy-3,4,7-trimethoxy-9,10-dihydrophenanthrene (1) was isolated and identified from the whole plants of Dendrobium moniliforme, as well as 24 known compounds including hircinol (2), (2R*,3S*)-3-hydroxymethyl-9-methoxy-2-(4′-hydroxy-3′,5′-dimethoxyphenyl)-2,3,6,7-tetrahydro-phenanthro[4,3-b]furan-5,11-diol (3), diospyrosin (4), aloifol I (5), moscatilin (6), 3,4′-dihydroxy-3′,4,5-trimethoxybibenzyl (7), gigantol (8), 3,3′-dihydroxy-4,5-dimethoxybibenzyl (9), longicornuol A (10), N-trans-cinnamoyltyramine (11), paprazine (12), N-trans-feruloyl 3′-O-methyldopamine (13), moupinamide (14), dihydroconiferyl dihydro-p-coumarate (15), dihydrosinapyl dihydro-p-coumarate (16), 3-isopropyl-5-acetoxycyclohexene-2-one-1 (17), p-hydroxybenzaldehyde (18), vanillin (19), p-hydroxyphenylpropionic acid (20), vanillic acid (21), protocatechuic acid (22), (+)-syringaresinol (23), β-sitosterol (24) and daucosterol (25). Compounds 3, 4, 13, 16, 17 and 20 were isolated from the Dendrobium genus for the first time, and compounds 2, 5, 7, 912, 14, 15, 18, 21 and 22 were originally obtained from D. moniliforme.  相似文献   

9.
Abstract

Three sialyl-Lex ganglioside analogs containing carboxymethyl, sulfate, and phosphate groups in place of the sialic acid moiety, have been synthesized. Glycosylation of 2-(trimethylsilyl)ethyl O-(2,3,4-tri-O-benzyl-α-L-fucopyranosyl)-(1→3)-O-(2-acetamido-6-O-benzyl-2-deoxy-β-d-glucopyranosyl) - (1→3) - 2, 4, 6-tri-O-benzyl-β-d-galactopyranoside (10) with methyl 2,4,6-tri-O-benzoyl-3-O-(methoxycarbonyl)methyl-1-thio-β-d-galactopyranoside (6) or methyl 2-O-benzoyl-4,6-O-benzylidene-3-O-levulinoyl-1-thio-β-d-galactopyranoside (9) using dimethyl-(methylthio)sulfonium triflate (DMTST) as a promoter, afforded the corresponding tetrasaccharide derivatives 11 and 19. Compounds 11 and 19 were converted into the α-trichloroacetimidates 14 and 23, via reductive removal of the benzyl and benzylidene groups, O-acetylation, removal of the 2-(trimethylsilyl)ethyl group, and treatment with trichloroacetonitrile, which, on coupling with (2S, 3R, 4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol (15) or 2-(tetradecyl)hexadecan-1-ol (24), gave the lipophilic derivatives 16 and 25. Compound 16 was transformed, via selective reduction of the azido group, condensation with octadecanoic acid, O-deacylation, and hydrolysis of the methyl ester group, into the title compound 18 in good yield. Compound 25 was treated with hydrazine acetate to give compound 26, which in turn was transformed, via sulfation or phosphorylation, and O-deacylation, into the target compounds 28 and 31.  相似文献   

10.
ABSTRACT

Synthesis of the terminal trisaccharide sequence of the ganglioside GD3, α-D-Neup5Ac-(2→8)-α-D-Neup5Ac-(2→3)-β-D-Galp-(1→4)-β-D-Glcp-(1→1)-Cer (2) was achieved by employing an α-(2→8) disialyl glycosyl donor (1). Condensation of 1 with the glycosyl acceptor 6, propyl 4,6-O-benzylidene-β-D-galactopyranoside, gave the desired protected trisaccharide 10 (14%) as well as the elimination and hydrolysis products of 6, compounds 8 and 9 respectively. O-Deacetylation and debenzylation of 10 gave the final trisaccharide 11, as its propyl glycoside.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号