首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Cavity ring down spectroscopy: detection of trace amounts of substance   总被引:1,自引:0,他引:1  
We describe several applications of cavity ring-down spectroscopy (CRDS) for trace matter detection. NO2 sensor was constructed in our team using this technique and blue-violet lasers (395–440 nm). Its sensitivity is better than single ppb. CRDS at 627 nm was used for detection of NO3. Successful monitoring of N2O in air requires high precision mid-infrared spectroscopy. These sensors might be used for atmospheric purity monitoring as well as for explosives detection. Here, the spectroscopy on sharp vibronic molecular resonances is performed. Therefore the single mode lasers which can be tuned to selected molecular lines are used. Similarly, the spectroscopy at 936 nm was used for sensitive water vapour detection. The opportunity of construction of H2O sensor reaching the sensitivity about 10 ppb is also discussed.  相似文献   

2.
A simple and reliable method is presented for optimizing the mode matching of a laser beam to the high-finesse cavity used in pulsed cavity ringdown spectroscopy (CRDS). The method is based on minimizing the excitation of higher-order transverse cavity modes through monitoring the non-degenerate transverse mode beating which becomes visible with induced cavity asymmetry caused by slight misalignment. No additional instrument is required other than a pinhole aperture, thus this method can be applied for CRDS experiments in the whole wavelength range. Measurements of the CRDS absorption spectrum of acetylene (C2H2) near 571 nm demonstrate that the mode-matching optimization improves the sensitivity of pulsed CRDS. Received: 22 October 2001 / Revised version: 16 January 2002 / Published online: 14 March 2002  相似文献   

3.
A mixture of H2 and CH4 is passed over a hot-wire tungsten filament in a diamond thin film chemical vapor deposition reactor. The resulting CH radicals are measured in absorption using cavity ring-down spectroscopy (CRDS). The concentration of the CH radicals increases as the filament is approached. The rotational temperature measurements indicate a large temperature discontinuity between the filament and the CH in the gas phase. The pathways for CH production were investigated by replacing H2 by D2 in the feed gas mixture, which resulted in the exclusive production of CD. From this observation it is concluded that rapid H/D isotope exchange dominates in the gas phase. Nonperiodic temporal oscillations in the CH concentration are observed when a rhenium filament is used in place of a tungsten filament. The oscillations are attributed to the nonperiodic changes in the amount of carbon at the filament surface. Received: 21 August 2000 / Accepted: 23 August 2000 / Published online: 23 May 2001  相似文献   

4.
Cavity ring-down spectroscopy (CRDS) has so far mostly been used for measurements in the gas phase. Only in 1999 was a first spectrum of condensed phase published. This spectrum was measured by using a coated plate between the cavity mirrors. Rather than using this method, our measurements were made using the cavity mirrors as a substrate. This way, the scattering losses could be reduced by approximately a factor of 100. In our measurements we investigated molecularly thin layers of iodine. The iodine spectra were taken in the frequency range from 16200 to 17200 cm-1 using pulsed CRDS. Received: 14 April 2000 / Revised version: 26 July 2000 / Published online: 22 November 2000  相似文献   

5.
Intracavity laser absorption spectroscopy (ICLAS) is used to measure the absolute concentration profiles of HCO and C2 in low-pressure acetylene/oxygen/nitrogen flames with equivalence ratios ϕ=0.8, 1.0, 1.5, 2.0 and 2.5. The flames with ϕ=2.0 and 2.5 are soot-producing, with light extinction reaching 0.1% per pass in the flame with ϕ=2.5. This strong broadband extinction does not affect the sensitivity of ICLAS, however. The temperature profiles of the flames were measured using laser-induced fluorescence of the OH radicals. For C2 concentration measurements, the (0–2) vibronic transition of the Swan band is used. The lines of this transition are located close to the HCO lines, making it possible to measure the two radical concentrations simultaneously. The C2 concentration is highest in the ϕ=1.5 flame, and lower in the lean and heavily sooted ϕ=2.5 flames. PACS  33.20.Kf; 33.70.Fd; 42.60.Da  相似文献   

6.
The Au/Pd/Ti-SiO2-(n)GaAs structures with and without (NH4)2Sx treated gallium arsenide surface, previously analysed by impedance spectroscopy (IS) method, have been investigated using charge transient spectroscopy (QTS) technique. The isothermal QTS spectra of MIS structures kept at room temperature under set of quiescent biases have been recorded in response to both negative and positive pulses of fixed small amplitudes. Two types of charge relaxation characterized by time constant values have been evidenced. The attempt to compare QTS results with ones obtained by impedance spectroscopy method has been presented.  相似文献   

7.
A two-channel thermal dissociation cavity ring down spectroscopy (CRDS) instrument has been built for in situ, real-time measurement of NO2 and total RNO2 (peroxy nitrates and alkyl nitrates) in ambient air, with a NO2 detection limit of 0.10 ppbv at 1 s. A 6-day long measurement was conducted at urban site of Hefei by using the CRDS instrument with a time resolution of 3 s. A commercial molybdenum converted chemiluminescence (Mo-CL) instrument was also used for comparison. The average RNO2 concentration in the 6 days was measured to be 1.94 ppbv. The Mo-CL instrument overestimated the NO2 concentration by a bias of +1.69 ppbv in average, for the reason that it cannot distinguish RNO2 from NO2. The relative bias could be over 100% during the afternoon hours when NO2 was low but RNO2 was high.  相似文献   

8.
We demonstrate a heterodyne-detected cavity ring-down spectroscopy (CRDS) method that allows for a noise-equivalent absorption coefficient of 6 × 10?14 cm?1 Hz?1/2, the lowest which has been reported in a CRDS measurement. It is shown that heterodyne-detected CRDS also reaches the quantum noise limit at reasonable optical powers. In addition to offering ultra-high sensitivity, this technique provides high frequency agility over a range of 2 THz in the near-infrared, which allows entire absorption bands to be recorded in minutes. As a demonstration experiment, high resolution spectra of a near-infrared carbon dioxide band have been recorded.  相似文献   

9.
The progress in the development of a sensor for the detection of trace air constituents to monitor spacecraft air quality is reported. A continuous-wave (cw), external-cavity tunable diode laser centered at 1.55 μm is used to pump an optical cavity absorption cell in cw-cavity ringdown spectroscopy (cw-CRDS). Preliminary results are presented that demonstrate the sensitivity, selectivity and reproducibility of this method. Detection limits of 2.0 ppm for CO, 2.5 ppm for CO2, 1.8 ppm for H2O, 19.4 ppb for NH3, 7.9 ppb for HCN and 4.0 ppb for C2H2 are calculated. Received: 3 April 2002 / Revised version: 3 June 2002 / Published online: 21 August 2002 RID="*" ID="*"Corresponding author. Fax: +1-202/994-5873, E-mail: Houston@gwu.edu  相似文献   

10.
Studies into the suitability of a novel, widely tunable telecom L-band (1,563–1,613 nm) digital supermode distributed Bragg reflector (DS-DBR) laser for cavity ring-down spectroscopy (CRDS) are presented. The spectrometer comprised of a 36.6?cm long linear cavity with ring-down times varying between 19–26 μs across the 50 nm DS-DBR wavelength range due to changes in the cavity mirror reflectivities with wavelength. The potential of such a broadband, high-resolution CRD spectrometer was illustrated by investigating several transitions of CO2 in air, a 5 % calibrated mixture and breath samples. Allan variance measurements at a single wavelength indicated an optimal minimum detectable absorption coefficient (α min) of 3 × 10?10 cm?1 over 20 s.  相似文献   

11.
Cavity ring-down spectroscopy (CRDS) is used to measure the NO mole fraction formed in the burnt gases of low-pressure premixed flames. It is shown that the line-of-sight absorption is greatly increased by the contribution of the NO molecules surrounding the burner. This contribution has been quantified by developing a mathematical procedure taking into account the spatial and spectral features of the CRDS measurement. Calculations have been undertaken in the general case of a stable species not consumed in the flame. The most sensitive parameter is the temperature both in the flame and outside the flame. Simulations allow the selection of the best spectroscopic transitions for a given flame (i.e. a given temperature profile), ensuring the weakest influence of the inaccuracy affecting the temperature determination. High quantum states belonging to the A–X (0–1) band of NO have been found to be the most valuable and have led to a NO mole fraction determination with an accuracy of ±13%. NO absorption in the flame was completely masked using the A–X (0–0) band. Finally, the prompt-NO mole fraction formed in a methane/air flame stabilized at 33 Torr is obtained by combining CRDS and laser induced fluorescence techniques. Received: 12 October / Revised version: 1 February 2002 / Published online: 14 March 2002  相似文献   

12.
Continuous wave cavity ring-down spectroscopy (cw-CRDS) coupled with sample pre-concentration has been used to measure acetylene (C2H2) mixing ratios in ambient air. Measurements were made in the near-infrared region (λ∼1535.393 nm), using the P(17) rotational line of the (ν13) vibrational combination band, a region free from interference by overlapping spectral absorption features of other air constituents. The spectrometer is shown to be capable of fast, quantitative and precise C2H2 mixing ratio determinations without the need for gas chromatographic (GC) separation. The current detection limit of the spectrometer following sample pre-concentration is estimated to be 35 parts per trillion by volume (pptv), which is sufficient for direct atmospheric detection of C2H2 at concentrations typical of both urban and rural environments. The CRDS apparatus performance was compared with an instrument using GC separation and flame ionization detection (GC-FID); both techniques were used to analyze air samples collected within and outside the laboratory. These measurements were shown to be in quantitative agreement. The indoor air sample was found to contain C2H2 at a mixing ratio of 3.87±0.22 ppbv (3.90±0.23 ppbv by GC-FID), and the C2H2 fractions in the outside air samples collected on two separate days from urban locations were 1.83±0.20 and 0.69±0.14 ppbv (1.18±0.09 and 0.60±0.04 ppbv by GC-FID). The discrepancy in the first outdoor air sample is attributed to degradation over a 2-month interval between the cw-CRDS and GC-FID analyses. PACS 82.80.Gk; 39.30.+w; 42.62.Fi; 42.68.Ca  相似文献   

13.
Thermal decomposition products of the Mohr salt (NH4)2Fe(SO4)2·6H2O have been studied and identified using the Mössbauer effect, X-ray diffraction, infrared spectroscopy, and the gravimetric and thermal differential methods. It has been found that the Mohr salt heated for 96 hr. in air at 520K changes to a single substance identified as NH4Fe(SO4)2 with a single Mössbauer line (width 0.30 mm/sec; isomeric shift 0.30 mm/sec). When the Mohr salt is heated for 1 hr. in air at 770 K it changes to Fe2(SO4)3 with a single Mössbauer line (width 0.33 mm/sec; isomeric shift 0.31 mm/sec) strikingly similar to line of NH4Fe(SO4)2.  相似文献   

14.
Catalytic degradation and diffusion processes of NO2 were followed by cavity-ring-down spectroscopy (CRDS) at 612.9 nm. The suitability of this absorption method for quasi-continuous, direct quantitative measurements over extended periods of time is demonstrated. The high sensitivity of the method is reflected by the fact that NO2 concentrations as low as 200 ppb were detected at wavelengths at which the absorption of NO2 is 12-fold lower than at the absorption maximum at 413 nm. Absorption coefficients of less than 1×10-7 cm-1 were measured. Received: 25 February 2000 / Revised version: 4 August 2000 / Published online: 5 October 2000  相似文献   

15.
The absorption spectrum of monodeuterated water has been recorded between 9100 and 9640 cm−1 using intracavity laser absorption spectroscopy (ICLAS) based on a vertical external cavity system emitting laser (VeCSEL). Overall 1706 lines were attributed to the HDO species. The spectrum assignment was performed on the basis of the ab initio calculations by Schwenke and Partridge. A set of 746 energy levels was derived from transitions assigned to 13 upper vibrational states, 300 of them being reported for the first time. Resonance interactions leading to an important strengthening and observations of the very weak 7ν2 and ν1 + 5ν2 bands are discussed. A detailed line list has been generated.  相似文献   

16.
Supersonic molecular beams of D2, CH4, NH3, and C2H4 are investigated in the expansion region employing collinear coherent anti-Stokes Raman spectroscopy (CARS). The analysis of rotationally resolved CARS spectra allows the determination of temperatures in the beam. The rotational relaxation as a function of stagnation pressure and separation from the nozzle is studied by recording theQ branch for D2 and the 3 R andS branches for CH4. Rotational temperatures for NH3 are determined by investigating the complete 3 band. At strong stagnation conditions broad structures arise which can be attributed to the formation of NH3 clusters. For C2H4 the 5 band with resolved rotational structure is reported. Again, at larger distances from the nozzle, broad structures are observed. They are assigned to the 1 and 5 vibrations in the C2H4 cluster.  相似文献   

17.
本文应用基于二极管激光器的双路光腔衰荡光谱技术,分别对大气中NO3和N2O5浓度进行监测. 通过使用实验室标准样校正有效吸收腔长比RL和系统的总损耗系数?,并获得了NO3有效吸收截面. 该装置在时间分辨率为1 s时,对NO3的测量灵敏度达到1.1 pptv,N2O5被在线转换成NO3,从而被另一路光腔衰荡光谱装置探测. 利用该装置,对合肥市区冬季夜间大气中的NO3,N2O5浓度进行了实时监测. 通过对比一次大气快速清洁过程中氮氧化物、臭氧、PM2.5等组分的浓度变化,讨论了大气环境下可能影响NO3及N2O5浓度的因素.  相似文献   

18.
Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) is applied to study NH3, adsorbed from the gas phase, and its decomposition products, i.e. NHx species, on Rh nanoparticles, produced by spincoating from a RhCl3 solution in water followed by reduction. A silicon ATR crystal with a hydroxilated SiO2 layer acts as the support for the nanoparticles. Upon exposure to NH3 in the vacuum chamber, NH3 adsorbed to both silica and Rh is detected (sensitivity ∼5 × 10−5 absorbance units). Interaction of the NH3 with the silica OH groups is observed around ∼2840 cm−1 in combination with peaks showing the disappearance of unperturbed OH vibrations between 3500 and 3700 cm−1. In addition, NH bend vibrations at 1634 cm−1 and NH stretch vibrations at 3065 and 3197 cm−1 are observed for substrate temperatures between 20 and 100 °C. The latter two correspond to NH on Rh, as verified with a sample without Rh, and probably correspond to undecomposed NH3. Moreover, they remain after evacuation, suggesting strongly bound species. For a substrate temperature of 75 and 100 °C, additional NH stretch peaks at 3354 and 3283 cm−1 are observed, possibly due to NH2 intermediates, indicating NH3 decomposition. It is shown that ATR-FTIR can contribute to the sensitive detection of adsorption and decomposition of gaseous species on realistic planar model catalysts.  相似文献   

19.
The application of pulsed cavity ring-down spectroscopy (CRDS) was demonstrated for the measurement of nitrogen dioxide (NO2) in automotive exhaust gas. The transition of the ν 3 vibrational band assigned to the antisymmetric stretching mode of NO2 was probed with a thermoelectrically cooled, pulsed, mid-infrared, distributed feedback, quantum cascade laser (QCL) at 6.13 μm. The measurement of NO2 in the exhaust gas from two diesel vehicles equipped with different aftertreatment devices was demonstrated using a CRDS-based NO2 sensor, which employs a HEPA filter and a membrane gas dryer to remove interference from water as well as particulates in the exhaust gas. Stable and sensitive measurement of NO2 in the exhaust gas was achieved for more than 30 minutes with a time resolution of 1 s.  相似文献   

20.
We present the first demonstration of heterodyne phase-sensitive dispersion spectroscopy (HPSDS) for in situ, non-intrusive and quantitative CO2 concentration measurements in flames. Dispersion spectroscopy retrieves gas properties by measuring the refractive index in the vicinity of a molecular resonance. The HPSDS scheme features a significant diagnostic advantage of the intrinsic immunity to laser power fluctuations caused by beam steering, thermal radiation and soot scattering in combustion environments, and thus no extra calibration process is required. In this work, we described the spectroscopic fundamentals for measuring heterodyne phase signals in flames. As a proof of principle, we used a mid-infrared interband cascade laser (ICL) near 4183?nm to exploit the strong CO2 transitions in the R-branch of the v3 fundamental band. The HPSDS signals of four CO2 lines, R(76), R(78), R(80) and R(82), were measured in CH4/air flames to obtain CO2 concentrations at different equivalence ratios (Φ?=?0.8–1.2), yielding a good agreement with the simultaneous laser absorption measurements using the same ICL. With its immunity to laser power fluctuations verified experimentally, the HPSDS sensor was successfully implemented to measure CO2 concentrations in C2H4/air sooting flames (Φ?=?1.78–2.38). Laser dispersion spectroscopy proves to be a promising and alternative diagnostic tool for combustion measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号