首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Many data are available on the drag Cx and the distribution of the static pressure over the surface of a sphere [1, 2]. However, there are virtually no data on pulsations of the pressure over the surface of a sphere. In the present paper, the results are given of an investigation of the total and spectral levels of the pressure pulsations at different points of the surface of a sphere at M 0.5–1.0 and Re (1.7–2.7)·.106. It was found that the strongest pressure pulsations occur on the side in the region of the angle 90°. In this region at M 0.6–0.8 the relative total level o/q where q is the velocity head in the oncoming stream, reaches values 0.18–0.22. It was established that at M = 0.7–0.9 narrow-band maxima occur in the spectra of the pressure pulsations at frequencies Sh fD/V = 0.2–0.3. Data are also presented on the pulsations of the base pressure behind a spherical segment with short cylindrical and conical trailing edges.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 164–168, September–October, 1981.  相似文献   

2.
The possibility of reducing turbulent friction with the help of large-eddy-breakup devices (LEBUs) and riblets is studied experimentally. The tests were conducted in a low-turbulence wind tunnel on a flat plate for 2·106 Re 7·106. The local friction coefficient was measured using internal strain-gauge balances, and the total drag was estimated by the momentum-transfer method. It is shown that a combination of LEBUs and riblets makes it possible to reduce the total turbulent friction drag of a flat plate 1800 mm long by 16%. The effects of the length of a ribbed surface on the efficiency of friction reduction and of LEBUs and riblets on the structure of a turbulent boundary layer are analyzed.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 39–46, May–June, 1995.  相似文献   

3.
The molecular theory of Doi has been used as a framework to characterize the rheological behavior of polymeric liquid crystals at the low deformation rates for which it was derived, and an appropriate extension for high deformation rates is presented. The essential physics behind the Doi formulation has, however, been retained in its entirety. The resulting four-parameter equation enables prediction of the shearing behavior at low and high deformation rates, of the stress in extensional flows, of the isotropic-anisotropic phase transition and of the molecular orientation. Extensional data over nearly three decades of elongation rate (10–2–101) and shearing data over six decades of shear rate (10–2–104) have been correlated using this analysis. Experimental data are presented for both homogeneous and inhomogeneous shearing stress fields. For the latter, a 20-fold range of capillary tube diameters has been employed and no effects of system geometry or the inhomogeneity of the flow-field are observed. Such an independence of the rheological properties from these effects does not occur for low molecular weight liquid crystals and this is, perhaps, the first time this has been reported for polymeric lyotropic liquid crystals; the physical basis for this major difference is discussed briefly. A Semi-empirical constant in eq. (18), N/m2 - c rod concentration, rods/m3 - c * critical rod concentration at which the isotropic phase becomes unstable, rods/m3 - C interaction potential in the Doi theory defined in eq. (3) - d rod diameter, m - D semi-empirical constant in eq. (19), s–1 - D r lumped rotational diffusivity defined in eq. (4), s–1 - rotational diffusivity of rods in a concentrated (liquid crystalline) system, s–1 - D ro rotational diffusivity of a dilute solution of rods, s–1 - f distribution function defining rod orientation - F tensorial term in the Doi theory defined in eq. (7) (or eq. (19)), s–1 - G tensorial term in the Doi theory defined in eq. (8) - K B Boltzmann constant, 1.38 × 10–23 J/K-molecule - L rod length, m - S scalar order parameter - S tensor order parameter defined in eq. (5) - t time, s - T absolute temperature, K - u unit vector describing the orientation of an individual rod - rate of change ofu due to macroscopic flow, s–1 - v fluid velocity vector, m/s - v velocity gradient tensor defined in eq. (9), s–1 - V mean field (aligning) potential defined in eq. (2) - x coordinate direction, m - Kronecker delta (= 0 if = 1 if = ) - r ratio of viscosity of suspension to that of the solvent at the same shear stress - s solvent viscosity, Pa · s - * viscosity at the critical concentrationc *, Pa · s - v 1, v2 numerical factors in eqs. (3) and (4), respectively - deviatoric stress tensor, N/m2 - volume fraction of rods - 0 constant in eq. (16) - * volume fraction of rods at the critical concentrationc * - average over the distribution functionf(u, t) (= d 2u f(u, t)) - gradient operator - d 2u integral over the surface of the sphere (|u| = 1)  相似文献   

4.
The results of balance aerodynamic tests on model straight wings with smooth and ribbed surfaces at an angle of attack =–4°–12°, Mach number M=0.15–0.63, and Reynolds number Re=2.4·106–3.5·106 are discussed. The nondimensional riblet spacings +, which determines the effect of the riblets on the turbulent friction drag, and the effect of riblets on the upper and/or lower surface of a straight wing on its drag, lift, and moment characteristics are estimated.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 33–38, March–April, 1995.  相似文献   

5.
Stokes flow through a rigid porous medium is analyzed in terms of the method of volume averaging. The traditional averaging procedure leads to an equation of motion and a continuity equation expressed in terms of the volume-averaged pressure and velocity. The equation of motion contains integrals involving spatial deviations of the pressure and velocity, the Brinkman correction, and other lower-order terms. The analysis clearly indicates why the Brinkman correction should not be used to accommodate ano slip condition at an interface between a porous medium and a bounding solid surface.The presence of spatial deviations of the pressure and velocity in the volume-averaged equations of motion gives rise to aclosure problem, and representations for the spatial deviations are derived that lead to Darcy's law. The theoretical development is not restricted to either homogeneous or spatially periodic porous media; however, the problem ofabrupt changes in the structure of a porous medium is not considered.Roman Letters A interfacial area of the - interface contained within the macroscopic system, m2 - A e area of entrances and exits for the -phase contained within the macroscopic system, m2 - A interfacial area of the - interface contained within the averaging volume, m2 - A * interfacial area of the - interface contained within a unit cell, m2 - Ae area of entrances and exits for the -phase contained within a unit cell, m2 - B second order tensor used to represent the velocity deviation (see Equation (3.30)) - b vector used to represent the pressure deviation (see Equation (3.31)), m–1 - d distance between two points at which the pressure is measured, m - g gravity vector, m/s2 - K Darcy's law permeability tensor, m2 - L characteristic length scale for volume averaged quantities, m - characteristic length scale for the -phase (see Figure 2), m - characteristic length scale for the -phase (see Figure 2), m - n unit normal vector pointing from the -phase toward the -phase (n =–n ) - n e unit normal vector for the entrances and exits of the -phase contained within a unit cell - p pressure in the -phase, N/m2 - p intrinsic phase average pressure for the -phase, N/m2 - p p , spatial deviation of the pressure in the -phase, N/m2 - r 0 radius of the averaging volume and radius of a capillary tube, m - v velocity vector for the -phase, m/s - v phase average velocity vector for the -phase, m/s - v intrinsic phase average velocity vector for the -phase, m/s - v v , spatial deviation of the velocity vector for the -phase, m/s - V averaging volume, m3 - V volume of the -phase contained within the averaging volume, m3 Greek Letters V/V, volume fraction of the -phase - mass density of the -phase, kg/m3 - viscosity of the -phase, Nt/m2 - arbitrary function used in the representation of the velocity deviation (see Equations (3.11) and (B1)), m/s - arbitrary function used in the representation of the pressure deviation (see Equations (3.12) and (B2)), s–1  相似文献   

6.
The peristaltic motion of a non-Newtonian fluid represented by the constitutive equation for a second-order fluid was studied for the case of a planar channel with harmonically undulating extensible walls. A perturbation series for the parameter ( half-width of channel/wave length) obtained explicit terms of 0(2), 0(2Re2) and 0(1Re2) respectively representing curvature, inertia and the non-Newtonian character of the fluid. Numerical computations were performed and compared to the perturbation analysis in order to determine the range of validity of the terms.Presented at the second conference Recent Developments in Structured Continua, May 23–25, 1990, in Sherbrooke, Québec, Canada  相似文献   

7.
The possibility of delaying laminar-turbulent transition on a flat plate in a longitudinal viscous incompressible flow by the optimal choice of the body force distribution in the boundary layer is discussed. It is shown that even for very high Reynolds numbers, Re 1010, a body force distribution can be found such that the corresponding boundary layer flow is absolutely stable, while the total drag of the body is less than that in the absence of body force action on the flow.  相似文献   

8.
The experimental excitation of intense collisionless shock waves (M 5) with subsequent plasma compression by the magnetic field of a shock coil is described. A magnetic plug > 20 kOe is produced in 100 × 10–9 sec by a current generator, a long line with 250-kV water insulation and a characteristic impedance of l At an initial deuterium-plasma density of 2 × 1014 cm–3, shock waves with a front width of 20c/03and a velocity of 5 × 107 cm/sec are recorded. The ion energy after the accumulation, determined from the neutron yield, turns out to be 2 ke V. Axial shock waves excited by the plasma flow beneath the shock coil are observed.Translated from Zhurnal Prikladnoi Mekhaniki i Teknicheskoi Fiziki, Vol. 11, No. 2, pp. 28–38, March–April, 1970.The authors thank G. I. Budker and R. Z. Sagdeev for formulating the problem, R. I. Soloukhin for interest in the study, and S. P. Shalamov for construction of the apparatus.  相似文献   

9.
The flow and heat transfer on a plate with a single spherical cavity has been experimentally investigated for M=4 and Re,L=3.1 · 106. The flow pattern over the cavity has been obtained. Zones of enhanced heat transfer have been detected, and the heat transfer coefficients in and near the cavity have been determined. It has been established that a single spherical cavity has almost no effect on the integral heat flux.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 48–52, September–October, 1991.The authors are grateful to V. N. Brazhko for assistance in carrying out the experiments and to T. A. Ershova for assistance in analyzing the results.  相似文献   

10.
This paper gives the results of experimental determinations of the critical heat fluxes in the boiling of Liquid nitrogen in forced-flow conditions in the mass velocity range 2 · 103-40 · 103 kg/m2 · sec, pressure range 29 · 104–245 · 104 N/m2, and at underheatings corresponding to the onset of normal boiling crises.Notation q0 critical heat flux - r heat of vaporization - i enthalpy of flow corresponding to saturation point - i enthalpy of flow corresponding to liquid temperature - surface tension - density of liquid - density of saturated vapor - C f friction factor - Wg mass velocity - Fr* Froude number - g acceleration due to gravity  相似文献   

11.
The study of heat transfer in turbulent flow over a flat plate is very important, not only because this situation frequently arises in practice, but also in that data for an isothermal flat plate are used to calculate heat transfer in more complex cases. In particular, such data are necessary when one uses the limiting relative laws which allow calculation of the effect of compressibility, pressure gradient, blowing, and other perturbing factors [1]. Most papers dealing with heat transfer for an isothermal flat plate refer to comparatively low Re values, when the velocity distribution in the boundary layer over almost its entire thickness can be described by the universal law of the wall. However, as Re increases there is an increasing layer adjacent to the outer boundary in which the velocity distribution cannot be described by the law of the wall, and therefore the results obtained for low Re are inapplicable. In the present paper coefficients of heat transfer from a turbulent flow to an isothermal flat plate have been obtained by numerical integration of the thermal boundary-layer equations over a wide range of the parameters 3 · 105 Re 2.5·1012, 102 Pr 103.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 94–100, July–August, 1976.  相似文献   

12.
One-dimensional problems of the flow in a boundary layer of finite thickness on the end face of a model and in a thin viscous shock layer on a sphere are solved numerically for three regimes of subsonic flow past a model with a flat blunt face exposed to subsonic jets of pure dissociated nitrogen in an induction plasmatron [1] (for stagnation pressures of (104–3·104) N/m2 and an enthalpy of 2.1·107 m2/sec2) and three regimes of hypersonic flow past spheres with parameters related by the local heat transfer simulation conditions [2, 3]. It is established that given equality of the stagnation pressures, enthalpies and velocity gradients on the outer edges of the boundary layers at the stagnation points on the sphere and the model, for a model of radius Rm=1.5·10–2 m in a subsonic jet the accuracy of reproduction of the heat transfer to the highly catalytic surface of a sphere in a uniform hypersonic flow is about 3%. For surfaces with a low level of catalytic activity the accuracy of simulation of the nonequilibrium heat transfer is determined by the deviations of the temperatures at the outer edges of the boundary layers on the body and the model. For this case the simulation conditions have the form: dUe/dx=idem, p0=idem, Te=idem. At stagnation pressuresP 02·104 N/m2 irrespective of the catalycity of the surface the heat flux at the stagnation point and the structure of the boundary layer near the axis of symmetry of models with a flat blunt face of radius Rm1.5·10–2 m exposed to subsonic nitrogen jets in a plasmatron with a discharge channel radius Rc=3·10–2 m correspond closely to the case of spheres in hypersonic flows with parameters determined by the simulation conditions [2, 3].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 135–143, March–April, 1990.  相似文献   

13.
This paper presents a theoretical and numerical investigation of the natural convection boundary-layer along a vertical surface, which is embedded in a porous medium, when the surface heat flux varies as (1 +x 2)), where is a constant andx is the distance along the surface. It is shown that for > -1/2 the solution develops from a similarity solution which is valid for small values ofx to one which is valid for large values ofx. However, when -1/2 no similarity solutions exist for large values ofx and it is found that there are two cases to consider, namely < -1/2 and = -1/2. The wall temperature and the velocity at large distances along the plate are determined for a range of values of .Notation g Gravitational acceleration - k Thermal conductivity of the saturated porous medium - K Permeability of the porous medium - l Typical streamwise length - q w Uniform heat flux on the wall - Ra Rayleigh number, =gK(q w /k)l/(v) - T Temperature - Too Temperature far from the plate - u, v Components of seepage velocity in the x and y directions - x, y Cartesian coordinates - Thermal diffusivity of the fluid saturated porous medium - The coefficient of thermal expansion - An undetermined constant - Porosity of the porous medium - Similarity variable, =y(1+x ) /3/x 1/3 - A preassigned constant - Kinematic viscosity - Nondimensional temperature, =(T – T )Ra1/3 k/qw - Similarity variable, = =y(loge x)1/3/x 2/3 - Similarity variable, =y/x 2/3 - Stream function  相似文献   

14.
The results of an experimental investigation of the separation of a turbulent boundary layer in the vicinity of a step on a flat plate at M = 2 and 3, and Re = U/v = (26–66)·106 m–1 are given. The step height was varied from 3 to 16 mm, which corresponded to the range of relative heights 1.1 h/ 7.6, where is the thickness of the boundary layer at the point at which the pressure starts to increase in front of the step. The obtained data for the pressure distribution in front of the step, and on its face and top surface, and the results of probe measurements in the separation and adjacent regions provide a more accurate scheme of the flow. The obtained data are compared with the results of other investigations.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 73–80, September–October, 1977.We express our thanks to A. M. Kharitonov for valuable comments made during the discussion of this work, and also to M. A. Gol'dfel'd for kindly providing the experimental data for axisytnmetric steps.  相似文献   

15.
Zusammenfassung Die Einführung von Zylinderkoordinaten (x, r, ) in die Gleichgewichtsbedingungen der Schnittkräfte bzw. in die Beziehungen zwischen Verzerrung und Verschiebungen am differentialen Schalenabschnitt ermöglicht die Berechnung des Spannungs- und Verschiebungszustandes von drehsymmetrischen Membranen mit beliebig gekrümmter Meridiankurve auf die Integration einer einfachen, linearen partiellen Differentialgleichung zweiter Ordnung für eine charakteristische FunktionF bzw. zurückzuführen. Eine geschlossene Lösung und damit eine Darstellung der Schnittkräfte und Verschiebungen durch explizite Formeln ist bei harmonischer Belastung cosn für zwei Funktionsgruppen=x 2 und=x –3 möglich. Im Sonderfall der drehsymmetrischen und der antimetrischen Belastung mitn=0 undn=1 gelten die Gleichungen der Schnitt- und Verschiebungsgrößen für eine beliebige Meridianfunktion=(). Die Betrachtungen der Randbedingungen offener Schalen bei harmonischer Belastung geben über die infinitesimalen Deformationen einer drehsymmetrischen Membran mit überall negativer Krümmung Aufschluß.  相似文献   

16.
Zusammenfassung An Polymethylmethacrylaten mit zahlenmittleren Molekulargewichten zwischen 8000 und 145000 g/Mol wurde die Scherviskosität bei Temperaturen im Bereich von 130–190 °C und bei Drücken bis zu 1000 kp/cm2 in Abhängigkeit vom Schergefälle gemessen. Trägt man die an ein und derselben Probe gemessenen relativen Viskositäten/ 0 (0 untere Newtonsche Viskosität) über 0· doppeltlogarithmisch auf, so erhält man eine einzige temperatur- und druckinvariante Kurve (master curve). Mit sinkendem Molekulargewicht machen sich jedoch bei großen Abszissenwerten zunehmend Abweichungen von der Temperatur- und Druckinvarianz bemerkbar. Die an Proben mit verschiedenem Molekulargewicht ermittelten invarianten Kurven weisen Wendepunkte auf, die sich mit wachsendem Molekulargewicht immer mehr zu niedrigeren Werten von/ 0 verlagern. Durch Verschieben in Abszissenrichtung kann man die Kurven bis zu ihren Wendepunkten miteinander zur Deckung bringen und erhält auf diese Weise einen begrenzten Bereich der Molekulargewichtsinvarianz.Die Temperatur- und Druckinvarianz läßt sich sowohl mit den vonPrandtl undEyring als auch mit den vonF. Bueche entwickelten Modellen für das Fließen von Hochpolymeren begründen. Aus der Temperatur- und Druckinvarianz folgt, daß der Temperatur- und der Druckkoeffizient der Viskosität mit zunehmendem Schergefälle in gleicher Weise abnehmen und ein Minimum durchlaufen, wie auch experimentell bestätigt wird.
Summary The shear viscosity of polymethylmethacrylates (number average molecular weights from 8000 to 145000 g/mole) was measured in dependence of shear rate in the temperature range from 130–190 °C and with pressures up to 1000 kp/cm2. If for one specimen 0 ( 0 lower Newtonian viscosity) is plotted over 0· , both in logarithmic scales, one gets a curve, which is independent of temperature and pressure (master curve). With decreasing molecular weights increasing deviations from the master curve are found. The master curves found with specimens of different molecular weights have inflection points, which shift to lower values of 0 with increasing molecular weight. By shifting of the whole curves in direction of the abscissa the parts until to the inflection point might be reduced to a single plot which is independent of molecular weight.The independence of temperature and pressure might be derived from the models developed by eitherPrandtl andEyring orF. Bueche for the flow in high polymers. From this follows that the temperature- and the pressure-coefficient of viscosity will similarly decrease with increasing shear rate until to a minimum, which was experimentally verified.


Erweiterte Fassung eines auf der Jahrestagung der Deutschen Rheologen am 21. Mai 1968 in Berlin gehaltenen Vortrags.

Herrn Dr.H. Kausch und Herrn Dipl.-Ing.H. Schönewald sind wir für wertvolle Diskussionen zu Dank verpflichtet. Der Arbeitsgemeinschaft industrieller Forschungsvereinigungen e.V. (AIP) danken wir für die finanzielle Unterstützung dieser Arbeit.  相似文献   

17.
Finite-span circular cylinders with two different aspect ratios, placed in a cross-flow, are investigated experimentally at a cylinder Reynolds number of 46,000. Simultaneous measurements of the flow-induced unsteady forces on the cylinders and the stream velocity in the wake are carried out. These results together with mean drag measurements along the span and available literature data are used to evaluate the flow mechanisms responsible for the induced unsteady forces and the effect of aspect ratio on these forces. The coherence of vortex shedding along the span of the cylinder is partially destroyed by the separated flow emanating from the top and by the recirculating flow behind the cylinder. As a result, the fluctuating lift decreases drastically. Based on the data collected, it is conjectured that the fluctuating recirculating flow behind the cylinder is the flow mechanism responsible for the unsteady drag and causes it to increase beyond the fluctuating lift. The fluctuating recirculating flow is a direct consequence of the unsteady separated flow. The unsteady forces vary along the span, with lift increasing and drag decreasing towards the cylinder base. When the cylinder span is large compared to the wall boundary layer thickness, a submerged two-dimensional region exists near the base. As the span decreases, the submerged two-dimensional region becomes smaller and eventually vanishes. Altogether, these results show that fluctuating drag is the dominant unsteady force in finite-span cylinders placed in a cross-flow. Its characteristic frequency is larger than that of the vortex shedding frequency.List of symbols a span of active element on cylinder, = 2.5 cm - C D local rms drag coefficient, 2D/ U 2 da - C L local rms lift coefficient, 2l/ U 2 da - C D local mean drag coefficient, 2D/ U 2 da - C D spanwise-averaged C D for finite-span cylinder - (C D ) 2D spanwise-averaged mean drag coefficient for two-dimensional cylinder - C p pressured coefficient - -(C p ) b pressure coefficient at = - d diameter of cylinder, = 10.2 cm - D fluctuating component of instantaneous drag - D local rms of fluctuating drag - D local mean drag - E D power spectrum of fluctuating drag, defined as - E L power spectra of fluctuating lift, defined as - f D dominant frequency of drag spectrum - f L dominant frequency of lift spectrum - f u dominant frequency of velocity spectrum - h span of cylinder - H height of test section, = 30.5 cm - L fluctuating component of instantaneous lift - L local rms of fluctuating lift - R Du () cross-correlation function of streamwise velocity and local drag, - R Lu () cross-correlation function of stream wise velocity and local lift, - Re Reynolds number, U d/y - S L Strouhal number based on f L ,f L d/U - S D Strouhal number based on f D ,f D d/U - S u Strouhal number based on f u , f u d/U - t time - u fluctuating component of instantaneous streamwise velocity - U mean streamwise velocity - mean stream velocity upstream of cylinder - x streamwise distance measured from axis of cylinder - y transverse distance measured from axis of test section - z spanwise distance measured from cylinder base - angular position on cylinder circumference measured from forward stagnation - kinematic viscosity of air - density of air - time lag in cross-correlation function - D normalized spectrum of fluctuating drag - L normalized spectrum of fluctuating lift  相似文献   

18.
Stokes flow in a deformable medium is considered in terms of an isotropic, linearly elastic solid matrix. The analysis is restricted to steady forms of the momentum equations and small deformation of the solid phase. Darcy's law can be used to determine the motion of the fluid phase; however, the determination of the Darcy's law permeability tensor represents part of the closure problem in which the position of the fluid-solid interface must be determined.Roman Letters A interfacial area of the- interface contained within the macroscopic system, m2 - A interfacial area of the- interface contained within the averaging volume, m2 - A e area of entrances and exits for the-phase contained within the macroscopic system, m2 - A * interfacial area of the- interface contained within a unit cell, m2 - A e * area of entrances and exits for the-phase contained within a unit cell, m2 - E Young's modulus for the-phase, N/m2 - e i unit base vectors (i = 1, 2, 3) - g gravity vector, m2/s - H height of elastic, porous bed, m - k unit base vector (=e 3) - characteristic length scale for the-phase, m - L characteristic length scale for volume-averaged quantities, m - n unit normal vector pointing from the-phase toward the-phase (n = -n ) - p pressure in the-phase, N/m2 - P p g·r, N/m2 - r 0 radius of the averaging volume, m - r position vector, m - t time, s - T total stress tensor in the-phase, N/m2 - T 0 hydrostatic stress tensor for the-phase, N/m2 - u displacement vector for the-phase, m - V averaging volume, m3 - V volume of the-phase contained within the averaging volume, m3 - v velocity vector for the-phase, m/s Greek Letters V /V, volume fraction of the-phase - mass density of the-phase, kg/m3 - shear coefficient of viscosity for the-phase, Nt/m2 - first Lamé coefficient for the-phase, N/m2 - second Lamé coefficient for the-phase, N/m2 - bulk coefficient of viscosity for the-phase, Nt/m2 - T T 0 , a deviatoric stress tensor for the-phase, N/m2  相似文献   

19.
Zusammenfassung Die Strömung und der Stofftransport in der Umgebung von Platten mit chemischer Oberflächenreaktion lassen sich durch Differentialgleichungen zuverlässig beschreiben. Deren vollständige Lösung konnte ohne vereinfachende Annahmen mit Hilfe theoretisch-numerischer Methoden erzielt werden. Dadurch erhält man Einblick in die tatsächlichen Transportvorgänge. Einige wichtige Ergebnisse werden erörtert. Insbesondere wird ein umfassendes Gesetz für den Stoffübergang mitgeteilt, das theoretisch und experimentell einwandfrei gesichert ist. Die Wiedergabe der bekannten sowie der neuen Daten ist gut. Sein Gültigkeitsbereich ist angegeben. Das neue Gesetz enthält neben anderen Grenzgesetzen auch das auf der Grundlage der GrenzschichtHypothese aufgestellte Gesetz.
Mass transfer with chemical surface reaction on flat plates in flow
The flow field and mass transfer from flat plates with chemical surface reaction can be described by means of differential equations. Their solutions have been obtained numerically without any simplifications. This report presents some of the more important results obtained, which give insight into the true transport phenomena.A comprehensive mass transfer law has been developed, that has a wide range of validity. It is in good agreement with all available experimental and theoretical data. The new mass transfer equation includes the special case of boundary layer law besides other special laws that describe mass transfer in limited regions of relevant parameters.

Formelzeichen cA örtliche Moldichte der reagierenden Komponente A - cAw Wert von cA an der Plattenoberfläche - c Funktion nach Gl. (28) - D Diffusionskoeffizient - fp Funktion nach Gl.(2) - k Funktion nach Gl.(27) - kw Reaktionsgeschwindigkeitskonstante - L Länge der Platte - n Reaktionsordnung - nA Molstromdichte der diffundierenden Komponente A - p Funktion nach Gl.(29) - rA Reaktionsstromdichte der reagierenden Komponente A - Shx,Sh örtliche und mittlere Sherwood-Zahl - w Anströmgeschwindigkeit des Fluidgemisches - wx, w x * absolute und bezogene örtliche Längsgeschwindigkeit - wy, w y * absolute und bezogene örtliche Quergeschwindigkeit - x, x* absolute und bezogene Längskoordinate - y, y* absolute und bezogene Querkoordinate - x, örtlicher und mittlerer Stoffübergangskoeffizien - dynamische Viskosität des Fluidgemisches - Massendichte des Fluidgemisches - Da kwLc n–1 /2D Damköhler-Zahl - Re wL//gr Reynolds-Zahl - Rekr=5 · 105 kritischer Wert der Reynolds-Rekr=5 · 105 Zahl - Sc //D Schmidt-Zahl - cA/cA bezogene örtliche Konzentration - w Wert von an der Plattenoberfläche Indizes A diffundierende und reagierende Komponente - w an der Plattenoberfläche - x in Längsrichtung - y in Querrichtung - in sehr großer Entfernung von der Platte  相似文献   

20.
In this paper we examine the closure problem associated with the volume averaged form of the Stokes equations presented in Part II. For both ordered and disordered porous media, we make use of a spatially periodic model of a porous medium. Under these circumstances the closure problem, in terms of theclosure variables, is independent of the weighting functions used in the spatial smoothing process. Comparison between theory and experiment suggests that the geometrical characteristics of the unit cell dominate the calculated value of the Darcy's law permeability tensor, whereas the periodic conditions required for thelocal form of the closure problem play only a minor role.Roman Letters A interfacial area of the- interface contained within the macroscopic region, m2 - A e area of entrances and exits for the-phase contained within the macroscopic system, m2 - A interfacial area of the- interface associated with the local closure problem, m2 - A p surface area of a particle, m2 - b vector used to represent the pressure deviation, m–1 - B 0 B+I, a second order tensor that maps v m ontov - B second-order tensor used to represent the velocity deviation - d p 6V p/Ap, effective particle diameter, m - d a vector related to the pressure, m - D a second-order tensor related to the velocity, m2 - g gravity vector, m/s2 - I unit tensor - K traditional Darcy's law permeability tensor calculated on the basis of a spatially periodic model, m2 - K m permeability tensor for the weighted average form of Darcy's law, m2 - L general characteristic length for volume averaged quantities, m - L p characteristic length for the volume averaged pressure, m - L characteristic length for the porosity, m - L v characteristic length for the volume averaged velocity, m - characteristic length (pore scale) for the-phase - i i=1, 2, 3 lattice vectors, m - weighting function - m(-y) , convolution product weighting function - m v special convolution product weighting function associated with the traditional averaging volume - m g general convolution product weighting function - m V unit cell convolution product weighting function - m C special convolution product weighting function for ordered media which produces the cellular average - n unit normal vector pointing from the-phase toward the -phase - p pressure in the-phase, N/m2 - p m superficial weighted average pressure, N/m2 - p m intrinsic weighted average pressure, N/m2 - p traditional intrinsic volume averaged pressure, N/m2 - p p m , spatial deviation pressure, N/m2 - r 0 radius of a spherical averaging volume, m - r m support of the convolution product weighting function - r position vector, m - r position vector locating points in the-phase, m. - V averaging volume, m3 - B volume of the-phase contained in the averaging volume, m3 - V cell volume of a unit cell, m3 - v velocity vector in the-phase, m/s - v m superficial weighted average velocity, m/s - v m intrinsic weighted average velocity, m/s - v traditional superficial volume averaged velocity, m/s - v v m , spatial deviation velocity, m/s - x position vector locating the centroid of the averaging volume or the convolution product weighting function, m - y position vector relative to the centroid, m - y position vector locating points in the -phase relative to the centroid, m Greek Letters indicator function for the-phase - Dirac distribution associated with the- interface - V /V, volume average porosity - m m * , weighted average porosity - mass density of the-phase, kg/m3 - viscosity of the-phase, Ns/m2  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号