首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of copper(I) iodide with tri-m-tolylphosphine (m-tolyl(3)P) in acetonitrile yielded the cluster [Cu(6)(mu2-I)(mu3-I)4(mu4-I)(m-tolyl(3)P)4(CH(3)CN)2] (1), with a bicapped adamantoid geometry. In this compound, four Cu atoms are coordinated to four terminally bonded m-tolyl(3)P ligands, two Cu atoms are bonded to two CH(3)CN ligands, and iodide ligands have mu2-I, mu3-I, and mu4-I bonding modes. This compound has four CuI(3)P and two CuI(3)N cores, and geometry around each Cu center is distorted tetrahedral.The polarizable iodide ligand and the position of the methyl group in the phenyl ring attached to the P atom appear to have played the pivotal role in the formation of monomeric bicapped adamantoid geometry, which is unique in copper chemistry.  相似文献   

2.
A series of relatively low-cost ionic liquids, based on the N-butyronitrile pyridinium cation [C(3)CNpy](+), designed to improve catalyst retention, have been prepared and evaluated in Suzuki and Stille coupling reactions. Depending on the nature of the anion, these salts react with palladium chloride to form [C(3)CNpy](2)[PdCl(4)] when the anion is Cl(-) and complexes of the formula [PdCl(2)(C(3)CNpy)(2)][anion](2) when the anion is PF(6)(-), BF(4)(-), or N(SO(2)CF(3))(2)(-). The solid-state structures of [C(3)CNpy]Cl and [C(3)CNpy](2)[PdCl(4)] have been established by single-crystal X-ray diffraction. The catalytic activity of these palladium complexes following immobilization in both N-butylpyridinium and nitrile-functionalized ionic liquids has been evaluated in Suzuki and Stille coupling reactions. All of the palladium complexes show good catalytic activity, but recycling and reuse is considerably superior in the nitrile-functionalized ionic liquid. Inductive coupled plasma spectroscopy reveals that the presence of the coordinating nitrile moiety in the ionic liquid leads to a significant decrease in palladium leaching relative to simple N-alkylpyridinium ionic liquids. Palladium nanoparticles have been identified as the active catalyst in the Stille reaction and were characterized using transmission electron microscopy.  相似文献   

3.
The reaction in water of the N-benzyliminodiacetate-copper(II) chelate ([Cu(NBzIDA)]) and the adenine:thymine base pair complex (AdeH:ThyH) with a Cu/NBzIDA/AdeH/ThyH molar ratio of 2:2:1:1 yields [Cu(2)(NBzIDA)(2)(H(2)O)(2)(mu-N7,N9-Ade(N3)H)].3H(2)O and free ThyH. The compound has been studied by thermal, spectral, and X-ray diffraction methods. In the asymmetric dinuclear complex units both Cu(II) atoms exhibit a square pyramidal coordination, where the four closest donors are supplied by NBzIDA in a mer-tridentate conformation and the N7 or N9 donors of AdeH, which is protonated at N3. The mu-N7,N9 bridge represents a new coordination mode for nonsubstituted AdeH, except for some adeninate(1-)-[methylmercury(II)] derivatives studied earlier. The dinuclear complex is stabilized by the Cu-N7 and Cu-N9 bonds and N6-H(exocyclic)...O(carboxyl) and N3-H(heterocyclic)...O(carboxyl) interligand interactions, respectively. The structure of the new compound differs from that of the mononuclear compound [Cu(NBzIDA)(Ade(N9)H)(H(2)O)].H(2)O, in which the unusual Cu-N3(AdeH) bond is stabilized by a N9-H...O(carboxyl) interligand interaction and where alternating benzyl-AdeH intermolecular pi,pi-stacking interactions produce infinite stacked chains. The possibility for ThyH to be involved in the molecular recognition between [Cu(NBzIDA)] and the AdeH:ThyH base pair is proposed.  相似文献   

4.
The ability of the transition metal complex M(salen)* (M = Ni, Cu) to form Lewis acid-base adducts with lead(II) salts has been explored. The new complexes Pb(Hsal)(2)(Cu(salen*))(2) (1), [Pb(NO(3))(Cu(salen*))(2)](NO(3)) (2), Pb(OAc)(2)(Cu(salen*)) (3), and [Pb(OAc)(Ni(salen*)(2)](OAc) (4) (Hsal = O(2)CC(6)H(4)-2-OH, salen* = bis(3-methoxy)salicylideneimine) have been synthesized and characterized spectroscopically and by single-crystal X-ray diffraction. The coordination environment of the lead in the heterobimetallic complex is sensitive both to the initial lead salt and to the transition metal salen* complex that is employed in the synthesis. As a result, we have been able to access both 2:1 and 1:1 adducts by varying either the lead salt or the transition metal in the heterobimetallic coordination complex. In all cases, the salen* complex is associated with the lead center via dative interactions of the phenolic oxygen atoms. The relationship between the coordination requirements of the lead and the chemical nature of the anion is examined. In compound 1, the Pb(2+) ion is chelated by two Cu(salen*) moieties, and both salicylate ligands remain attached to the lead center and bridge to the Cu(2+) ions. The two Cu(salen*) groups are roughly parallel and opposed to each other as required by crystallographic inversion symmetry at lead. In contrast, the two Cu(salen*) groups present in 2 and 4 attached to the lead ion show considerable overlap. Furthermore, only one nitrate ion in 2 and one acetate ion in 4 remain bonded to the lead center. Compound 3 is unique in that only one Cu(salen*) group can bind to lead. Here, both acetate ligands remain attached, although one is chelating bidentate and the other is monodentate.  相似文献   

5.
Reactions of CuSO(4) with 2-(1-imidazole)-1-hydroxy-1,1'-ethylidenediphosphonic acid (ImhedpH(4)) under hydrothermal conditions at different temperatures lead to four new metal phosphonates: Cu(ImhedpH(3))(2)(H(2)O).2H(2)O (), Cu(ImhedpH(3))(2) (), Cu(3)(ImhedpH(2))(2)(ImhedpH(3))(2).4H(2)O (), and Cu(3)(ImhedpH)(2).2H(2)O (). Compounds and have mononuclear structures in which the Cu atoms adopt square pyramidal and square planar geometries, respectively. In compound , a chain structure is observed where the Cu(3)(ImhedpH(2))(2)(ImhedpH(3))(2) trimer units are connected by edge-sharing of the {Cu(2)O(5)} square pyramids. Compound exhibits a layer structure made up of Cu(3)(ImhedpH)(2) trimer units. The connection of trimers through corner-sharing of {Cu(1)O(4)} and {CPO(3)} tetrahedra results in a two-dimensional layer containing 8- and 16-membered rings. The imidazole groups are grafted on the two sides of the layer. Magnetic studies reveal that ferromagnetic interactions are mediated in , while for compound , ferrimagnetism is observed below 5.8 K.  相似文献   

6.
Zhao SB  Wang RY  Wang S 《Inorganic chemistry》2006,45(15):5830-5840
Five Cu(I) complexes [Cu2(ttab)(CH3CN)2][BF4]2 (1), [Cu(2)(ttab)(PPh3)2][BF4]2 (2), [Cu2(ttab)I2] (3), [Cu2(ttab)(I3)2] (4), and [Cu2(ttab)(I)BF4]n (5) with 1,2,4,5-tetra(7-azaindolyl)benzene (ttab) have been synthesized and characterized. The structures of compound 1, 2, 4, and 5 have been determined by single-crystal X-ray diffraction analyses, which established that 1, 2, and 4 are discrete dinuclear Cu2 compounds while compound 5 is a 1D coordination polymer with the I- ligand bridging two dinuclear Cu2 units. The ttab ligand in all four complexes adopts a 1,3-chelation mode. The Cu(I) center in all complexes is three-coordinate. Close contact between the Cu(I) center and the benzene ring in the ttab ligand was observed in all four structures, which is believed to play a role in stabilizing the three-coordinate geometry of the Cu(I) center. The crystals of 1, 2, and 5 contain channels in the lattice that host solvent molecules such as CH2Cl2 and toluene. Fluorescent measurements established that, in solution, compounds 1-3 display weak blue luminescence which originates from the ttab but is significantly red-shifted and has a much lower emission intensity, compared to the free ttab ligand. The application of compound 1 in C-N cross-coupling reactions was examined by using the reaction of phenyl halides with imidazole as a model system. For the reaction with phenyl iodide, 1 was found to be as effective a catalyst as the CuI/1,10-phenanthroline system. For the reaction with phenyl bromide, 1 is less effective than the CuI/1,10-phenanthroline system. Compound 1 reacts with O2 gas, as established by UV-vis spectra, but the oxidized products have not been characterized.  相似文献   

7.
8.
By reaction of Cu(2)CO(3)(OH)(2), 2-benzylmalonic acid (H(2)Bzmal), and 1,10-phenanthroline (phen), [Cu(Bzmal)(phen)(H(2)O)] x 3H(2)O (compound 1) has been obtained and characterized by thermal, spectral, magnetic, and X-ray diffraction methods. The molecular structure of 1 is remarkably similar to that of [Cu(Bzmal)(bipy)(H(2)O)] x 2H(2)O (compound 2, bipy = 2,2'-bipyridine). In both complexes, the aryl(Bzmal) ring produces an unexpected pi,pi-stacking interaction with the Cu(II)-(aromatic alpha,alpha'-diimine) chelate ring, at an average distance d(pi)(-)(pi) of 3.40 A, involving roughly parallel and smoothly slipped rings. This insight is discussed as new structural evidence for metalloaromaticity of Cu(II)-(aromatic alpha,alpha'-diimine) chelate rings. Interestingly, 1 recognizes itself by a weak intermolecular pi,pi-stacking interaction between aryl(Bzmal) ligands to give pairs of complex molecules. In contrast, there is an intermolecular pyridyl-pyridyl pi,pi-stacking interaction also forming pairs of complex molecules in 2.  相似文献   

9.
The reactions of the singly deprotonated di-2-pyridylmethanediol ligand (dpmdH(-)) with copper(II) and bismuth(III) have been investigated. A new dinuclear bismuth(III) complex Bi(2)(dpmdH)(2)(O(2)CCF(3))(4)(THF)(2), 1, has been obtained by the reaction of BiPh(3) with di-2-pyridyl ketone in the presence of HO(2)CCF(3) in tetrahydrofuran (THF). The reaction of Cu(OCH(3))(2) with di-2-pyridyl ketone, H(2)O, and acetic acid in a 1:2:2:2 ratio yielded a mononuclear complex Cu[(2-Py)(2)CO(OH)](2)(HO(2)CCH(3))(2), 2, while the reaction of Cu(OAC)(2)(H(2)O) with di-2-pyridyl ketone and acetic acid in a 2:1:1 ratio yielded a tetranuclear complex Cu(4)[(2-Py)(2)CO(OH)](2)(O(2)CCH(3))(6)(H(2)O)(2), 3. The structures of these complexes were determined by single-crystal X-ray diffraction analyses. Three different bonding modes of the dpmdH(-) ligand were observed in compounds 1-3. In 2, the dpmdH(-) ligand functions as a tridentate chelate to the copper center and forms a hydrogen bond between the OH group and the noncoordinating HO(2)CCH(3) molecule. In 1 and 3, the dpmdH(-) ligand functions as a bridging ligand to two metal centers through the oxygen atom. The two pyridyl groups of the dpmdH(-) ligand are bound to one bismuth(III) center in 1, while in 3 they are bound two copper(II) centers, respectively. Compound 3 has an unusual one dimensional hydrogen bonded extended structure. The intramolecular magnetic interaction in 3 has been found to be dominated by ferromagnetism. Crystal data: 1, C(38)H(34)N(4)O(14)F(12)Bi(2), triclinic P&onemacr;, a = 11.764(3) ?, b = 11.949(3) ?, c = 9.737(1) ?, alpha =101.36(2) degrees, beta = 105.64(2) degrees, gamma = 63.79(2) degrees, Z = 1; 2, C(26)H(26)N(4)O(8)Cu/CH(2)Cl(2), monoclinic C2/c, a = 25.51(3) ?, b = 7.861(7) ?, c = 16.24(2) ?, beta = 113.08(9) degrees, Z = 4; 3, C(34)H(40)N(4)O(18)Cu(4)/CH(2)Cl(2), triclinic P&onemacr;, a = 10.494(2) ?, b = 13.885(2) ?, c = 7.900(4) ?, alpha =106.52(2) degrees, beta = 90.85(3) degrees, gamma = 94.12(1) degrees, Z = 1.  相似文献   

10.
New heterospin complexes have been obtained by combining the binuclear complexes [{Cu(H(2)O)L(1)}Ln(O(2)NO)(3)] or [{CuL(2)}Ln(O(2)NO)(3)] (L(1) = N,N'-propylene-di(3-methoxysalicylideneiminato); L(2) = N,N'-ethylene-di(3-methoxysalicylideneiminato); Ln = Gd(3+), Sm(3+), Tb(3+)), with the mononuclear [CuL(1)(2)] and the nickel dithiolene complexes [Ni(mnt)(2)](q)- (q = 1, 2; mnt = maleonitriledithiolate), as follows: (1)infinity[{CuL(1)}(2)Ln(O(2)NO){Ni(mnt)(2)}].Solv.CH(3)CN (Ln = Gd(3+), Solv = CH(3)OH (1), Ln = Sm(3+), Solv = CH(3)CN (2)) and [{(CH(3)OH)CuL(2)}(2)Sm(O(2)NO)][Ni(mnt)(2)] (3) with [Ni(mnt)2]2-, [{(CH(3)CN)CuL(1)}(2)Ln(H(2)O)][Ni(mnt)(2)]3.2CH(3)CN (Ln = Gd(3+) (4), Sm(3+) (5), Tb(3+) (6)), and [{(CH(3)OH)CuL(2)}{CuL(2)}Gd(O(2)NO){Ni(mnt)(2)}][Ni(mnt)(2)].CH(2)Cl(2) (7) with [Ni(mnt))(2]*-. Trinuclear, almost linear, [CuLnCu] motifs are found in all the compounds. In the isostructural 1 and 2, two trans cyano groups from a [Ni(mnt)2]2- unit bridge two trimetallic nodes through axial coordination to the Cu centers, thus leading to the establishment of infinite chains. 3 is an ionic compound, containing discrete [{(CH(3)OH)CuL(2)}(2)Sm(O(2)NO)](2+) cations and [Ni(mnt)(2)](2-) anions. Within the series 4-6, layers of discrete [CuLnCu](3+) motifs alternate with stacks of interacting [Ni(mnt)(2)](*-) radical anions, for which two overlap modes, providing two different types of stacks, can be disclosed. The strength of the intermolecular interactions between the open-shell species is estimated through extended Hückel calculations. In compound 7, [Ni(mnt)(2)](*-) radical anions coordinate group one of the Cu centers of a trinuclear [Cu(2)Gd] motif through a CN, while discrete [Ni(mnt)(2)](*-) units are also present, overlapping in between, but also with the coordinated ones. Furthermore, the [Cu(2)Gd] moieties dimerize each other upon linkage by two nitrato groups, both acting as chelate toward the gadolinium ion from one unit and monodentate toward a Cu ion from the other unit. The magnetic properties of the gadolinium-containing complexes have been determined. Ferromagnetic exchange interactions within the trinuclear [Cu(2)Gd] motifs occur. In the compounds 4 and 7, the [Ni(mnt)(2)](*-) radical anions contribution to the magnetization is clearly observed in the high-temperature regime, and most of it vanishes upon temperature decrease, very likely because of the rather strong antiferromagnetic exchange interactions between the open-shell species. The extent of the exchange interaction in the compound 7, which was found to be antiferromagnetic, between the coordinated Cu center and the corresponding [Ni(mnt)(2)](*-) radical anion, bearing mostly a 3p spin type, was estimated through CASSCF/CASPT2 calculations. Compound 6 exhibits a slow relaxation of the magnetization.  相似文献   

11.
The [Cu(3)(dppm)(3)OH](BF(4))(2) cyclic cluster host is found to be luminescent at 298 K (lambda(max) = 540 nm; tau(e) = 89 +/- 9 &mgr;s; Phi(e) = 0.14 +/- 0.01) in degassed ethanol solutions and at 77 K (lambda(max) = 480 nm; tau(e) = 170 +/- 40 &mgr;s; Phi = 0.73 +/- 0.07) also in ethanol. The nature of the lowest energy excited states has been addressed theoretically using density functional theory and experimentally using UV-visible, luminescence, and polarized luminescence spectroscopy and is found to be (1,3)A(2) arising from the.(18e)(4)(7a(2))(1)(13a(1))(1) electronic configuration. The excited state geometry optimization for the model Cu(3)(PH(3))(6)OH(2+) compound in its T(1) state ((3)A(2)) has been performed using density functional theory and compared to its ground state structure. The Cu.Cu bond length is expected to decrease greatly in the excited state (calculated DeltaQ approximately 0.47 ?), in agreement with the d(10) electronic configuration. The perturbation of the photophysical properties by the addition of two guest carboxylate anions has been investigated. From the Stern-Volmer plots, the quenching constants, k(q), are 1.65 x 10(8) and 5.10 x 10(8) M(-)(1) s(-)(1) for acetate and 4-aminobenzoate, respectively, which are also proportional to the relative binding strengths of the substrates with Cu(3)(dppm)(3)OH(2+) (i.e., acetate < 4-aminobenzoate).  相似文献   

12.
13.
A supramolecular compound(H2en)2[Cu(en)2(H3O)2][Mo8O28](en=ethylenediamine) was hydrothermally prepared and confirmed by elemental analysis and TG analysis.Single-crystal X-ray analysis reveals that the crystal crystallizes in the triclinic system,space group P1 with a=9.4635(4),b=9.8645(5),c=10.9794(5),α=69.2050(10),β=72.3730(10),γ=78.4510(10)o,Mr=1559.55,V=908.24(7)3,Z=1,Dc=2.851 g/m3,F(000)=749,μ=3.350 mm-1,S=1.000,the final R=0.0217 and wR=0.0567.The compound consists of(H2en)2+,[Mo8O28]8-anion and [Cu(en)2(H3O)2]2+ cations and constructs a 3D supramolecular structure through hydrogen bonds between the nitrogen atoms from en of [Cu(en)2(H3O)2]4+ fragments and the terminal oxygen atoms from the [Mo8O28]8-polyoxoanions.The electrochemical behavior of this compound has been studied in detail based on a solid bulk modified carbon paste electrode of compound(CPE).  相似文献   

14.
A series of soluble trinuclear copper(I) and silver(I) complexes containing bicapped diynyl ligands, [M(3)(micro-dppm)(3)(micro(3)-eta(1)-C triple bond CC triple bond CR)(2)]PF(6) (M = Cu, R = Ph, C(6)H(4)-CH(3)-p, C(6)H(4)-OCH(3)-p, (n)C(6)H(13), H; M = Ag, R = Ph, C(6)H(4)-OCH(3)-p), has been synthesized and their electronic, photophysical, and electrochemical properties studied. The X-ray crystal structures of [Cu(3)(micro-dppm)(3)(micro(3)-eta(1)-C triple bond CC triple bond CPh)(2)]PF(6) and [Cu(3)(micro-dppm)(3)(micro(3)-eta(1)-C triple bond CC triple bond CH)(2)]PF(6) have been determined.  相似文献   

15.
A new Cu(II) complex, [Cu(3)(dcp)(2)(H(2)O)(4)](n), with the ligand 3,5-pyrazoledicarboxylic acid monohydrate (H(3)dcp) has been prepared by hydrothermal synthesis, and it crystallizes in the monoclinic space group P2(1)/c with a = 11.633(2) A, b = 9.6005(14) A, c = 6.9230(17) A, beta = 106.01(2) degrees, and Z = 2. In the solid state structure of [Cu(3)(dcp)(2)(H(2)O)(4)](n), trinuclear [Cu(3)(dcp)(2)(H(2)O)(4)] repeating units in which two dcp(3-) ligands chelate the three Cu(II) ions with the central Cu(II) ion, Cu(1) (on an inversion center), link to form infinite 2D sheets via syn-anti equatorial-equatorial carboxylate bridges between Cu(2) atoms in adjacent trimers. These layers are further linked by syn-anti axial-equatorial carboxylate bridging between Cu(1) atoms in adjacent sheets resulting in the formation of a crystallographic 3D network. A detailed analysis of the magnetic properties of [Cu(3)(dcp)(2)(H(2)O)(4)](n) reveals that the dcp(3-) ligand acts to link Cu(II) centers in three different ways with coupling constants orders of magnitude apart in value. In the high temperature region above 50 K, the dominant interaction is strongly antiferromagnetic (J/k(B) = -32 K) within the trimer units mediated by the pyrazolate bridges. Below 20 K, the trimer motif can be modeled as an S = 1/2 unit. These units are coupled to their neighbors by a ferromagnetic interaction mediated by the syn-anti equatorial-equatorial carboxylate bridge. This interaction has been estimated at J(2D)/k(B) = +2.8 K on the basis of a 2D square lattice Heisenberg model. Finally, below 3.2 K a weak antiferromagnetic coupling (J(3D)/k(B) = -0.1 K) which is mediated by the syn-anti axial-equatorial carboxylate bridges between the 2D layers becomes relevant to describe the magnetic (T, H) phase diagram of this material.  相似文献   

16.
The synthesis and molecular structure of a new dinuclear copper(Ⅰ) complex [Cu(dppb)(NO 3)] 2 are reported.The compound crystallizes in the monoclinic system,space group P2 1 /n with a=12.830(3),b=10.899(2),c=19.666 (4),β=104.69(3)°,V=2660.1(9)3,Z=4,D c=1.378 g/cm 3,F(000)=1144,the final R=0.0600 and wR=0.0668 for 2951 observed reflections with I > 2σ(Ⅰ).The complex contains a folded Cu 2 P 4 core structure,with two Cu(Ⅰ) atoms being bridged by a pair of dppb ligands to form a 14-membered Cu 2 P 4 C 8 zigzag ring.The ligand sphere of each metal center is completed by a nitrate anion in a chelating fashion.  相似文献   

17.
Lü J  Shen E  Yuan M  Li Y  Wang E  Hu C  Xu L  Peng J 《Inorganic chemistry》2003,42(22):6956-6958
A novel three-dimensional copper molybdate with mixed ligands, [[Cu(II)(2,2'-bpy)][Cu(II)(IN)(2)][Mo(4)O(12)(OH)(2)]] (IN(-) = isonicotinate ion, 2,2'-bpy = 2,2'-bipyridine), 1, has been hydrothermally synthesized and structurally characterized, and this compound is built from an unprecedented tetranuclear molybdenum oxide cluster covalently bonded to two types of copper complex fragments, [Cu(II)(2,2'-bpy)](2+) and [Cu(II)(IN)(2)], via terminal oxygen atoms of [MoO(6)] octahedra. Crystal data for compound 1: monoclinic, space group C2/c, a = 16.4755 A, b = 10.3714 A, c = 17.4382 A, alpha = 90.0000 degrees, beta = 94.8098 degrees, gamma = 90.0000 degrees; V = 2969.24 A(3); Z = 2. Variable temperature magnetic susceptibility indicates that both ferromagnetic and antiferromagnetic interactions exist in 1.  相似文献   

18.
Self assembly of Cu(2+) with the multifunctional ligand 2-(4-pyridyl)thiazole-4-carboxylic acid (Pytac) affords the neutral 3D coordination polymer [Cu(3)(Pytac)(6)](H(2)O)(14) (hereafter, SZL-1), which has the rare moganite topology. The mineral moganite has a topology that is closely related to the well-known quartz topology, but the two topologies are differentiated by the number of topologically inequivalent nodes. Whereas only one kind of node is present in quartz, two types of topologically inequivalent nodes are present in moganite. The title compound, which has three vertices in its repeat unit, has two types of topologically inequivalent nodes with the overall vertex symbol (4(2)x6(2)x8(2))(4x6(4)x8)(2) corresponding to the moganite net. Prior to this report, few metal-organic framework materials (MOFs) have been found to contain more than one type of node, and SZL-1 is the first MOF with the moganite topology.  相似文献   

19.
Chen X  Huang X  Li J 《Inorganic chemistry》2001,40(6):1341-1346
Three novel metal polytellurides Rb(4)Hg(5)(Te(2))(2)(Te(3))(2)Te(3) (I), [Zn(en)(3)](4)In(16)(Te(2))(4)(Te(3))Te(22) (II), and K(2)Cu(2)(Te(2))(Te(3)) (III) have been prepared by solvothermal reactions in superheated ethylenediamine at 160 degrees C. Their crystal structures have been determined by single-crystal X-ray diffraction techniques. Crystal data for I: space group Pnma, a = 9.803(2) A, b = 9.124(2) A, c = 34.714(7) A, Z = 4. Crystal data for II: space group C2/c, a = 36.814(7) A, b = 16.908(3) A, c = 25.302(5) A, beta = 128.46(3) degrees, Z = 4. Crystal data for III: space group Cmcm, a = 11.386(2) A, b = 7.756(2) A, c = 11.985(2) A, Z = 4. The crystal structure of I consists of 1D infinite ribbons of [Hg(5)(Te(2))(2)(Te(3))(2)Te(3)](4-), which are composed of tetrahedral HgTe(4) and trigonal HgTe(3) units connected through the bridging Te(2-), (Te(2))(2-), and (Te(3))(2-) ligands. II is a layered compound containing InTe(4) tetrahedra that share corners and edges via Te, Te(2), and Te(3) units to form a 2D slab that contains relatively large voids. The [Zn(en)(3)](2+) template cations are filled in these voids and between the slabs. The primary building blocks of III are CuTe(4) tetrahedra that are linked by intralayer (Te(3))(2-) and interlayer (Te(2))(2-) units to form a 3D network with open channels that are occupied by the K(+) cations. All three compounds are rare polytelluride products of solvothermal reactions that contain both Te(2) and Te(3) fragments with unusual metal-tellurium coordination.  相似文献   

20.
1 INTRODUCTION There has been increasing interest of Cu(II) and phenanthroline complexes in the field of coor- dination chemistry[1~4]. At the same time, nitronyl nitroxide radicals have played a prominent role in the design and construction of molecula…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号