首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let K be a field of characteristic 0 and let (K*)n denote the n-fold Cartesian product of K*, endowed with coordinatewise multiplication. Let Γ be a subgroup of (K*)n of finite rank. We consider equations (*) a1x1 + … + anxn = 1 in x = (x1xn)Γ, where a = (a1,an)(K*)n. Two tuples a, b(K*)n are called Γ-equivalent if there is a uΓ such that b = u · a. Gy?ry and the author [Compositio Math. 66 (1988) 329-354] showed that for all but finitely many Γ-equivalence classes of tuples a(K*)n, the set of solutions of (*) is contained in the union of not more than 2(n+1! proper linear subspaces of Kn. Later, this was improved by the author [J. reine angew. Math. 432 (1992) 177-217] to (n!)2n+2. In the present paper we will show that for all but finitely many Γ-equivalence classes of tuples of coefficients, the set of non-degenerate solutions of (*) (i.e., with non-vanishing subsums) is contained in the union of not more than 2n proper linear subspaces of Kn. Further we give an example showing that 2n cannot be replaced by a quantity smaller than n.  相似文献   

2.
We begin with the notion of K-flat projectivity. For each sup-algebra L we then introduce a binary relation L? on it. The K-flat projective sup-algebras are exactly such sup-algebras with each element a approximated by the element x, xL?a and the relation L? being stable with respect to the operations on L. Further on, we introduce the notion of a K-comonad and characterize K-flat projective sup-algebras as such sup-algebras having a coalgebra structure for the K-comonad.  相似文献   

3.
Consider the system, of linear equations Ax = b where A is an n × n real symmetric, positive definite matrix and b is a known vector. Suppose we are given an approximation to x, ξ, and we wish to determine upper and lower bounds for ∥ xξ ∥ where ∥ ··· ∥ indicates the euclidean norm. Given the sequence of vectors {ri}ik = 0, where ri = Ari − 1 and r0 = b − Aξ, it is shown how to construct a sequence of upper and lower bounds for ∥ xξ ∥ using the theory of moments.  相似文献   

4.
Let r be a positive integer and f1,…,fr be distinct polynomials in Z[X]. If f1(n),…,fr(n) are all prime for infinitely many n, then it is necessary that the polynomials fi are irreducible in Z[X], have positive leading coefficients, and no prime p divides all values of the product f1(n)···fr(n), as n runs over Z. Assuming these necessary conditions, Bateman and Horn (Math. Comput.16 (1962), 363-367) proposed a conjectural asymptotic estimate on the number of positive integers n?x such that f1(n),…,fr(n) are all primes. In the present paper, we apply the Hardy-Littlewood circle method to study the Bateman-Horn conjecture when r?2. We consider the Bateman-Horn conjecture for the polynomials in any partition {f1,…,fs}, {fs+1,…,fr} with a linear change of variables. Our main result is as follows: If the Bateman-Horn conjecture on such a partition and change of variables holds true with some conjectural error terms, then the Bateman-Horn conjecture for f1,…,fr is equivalent to a plausible error term conjecture for the minor arcs in the circle method.  相似文献   

5.
Given a continued fraction [a0;a1,a2,…], pn/qn=[a0;a1,…,an] is called the n-th convergent for n=0,1,2,…. Leaping convergents are those of every r-th convergent prn+i/qrn+i (n=0,1,2,…) for fixed integers r and i with r?2 and i=0,1,…,r-1. This leaping step r can be chosen as the length of period in the continued fraction. Elsner studied the leaping convergents p3n+1/q3n+1 for the continued fraction of and obtained some arithmetic properties. Komatsu studied those p3n/q3n for (s?2). He has also extended such results for some more general continued fractions. Such concepts have been generalized in the case of regular continued fractions. In this paper leaping convergents in the non-regular continued fractions are considered so that a more general three term relation is satisfied. Moreover, the leaping step r need not necessarily to equal the length of period. As one of applications a new recurrence formula for leaping convergents of Apery’s continued fraction of ζ(3) is shown.  相似文献   

6.
Let q ∈ {2, 3} and let 0 = s0 < s1 < … < sq = T be integers. For m, nZ, we put ¯m,n = {jZ| m? j ? n}. We set lj = sj − sj−1 for j ∈ 1, q. Given (p1,, pq) ∈ Rq, let b: ZR be a periodic function of period T such that b(·) = pj on sj−1 + 1, sj for each j ∈ 1, q. We study the spectral gaps of the Jacobi operator (Ju)(n) = u(n + 1) + u(n − 1) + b(n)u(n) acting on l2(Z). By [λ2j , λ2j−1] we denote the jth band of the spectrum of J counted from above for j ∈ 1, T. Suppose that pmpn for mn. We prove that the statements (i) and (ii) below are equivalent for λ ∈ R and i ∈ 1, T − 1.  相似文献   

7.
8.
9.
For positive integers α1,α2,…,αr with αr?2, the multiple zeta value or r-fold Euler sum is defined as
  相似文献   

10.
Given a subset S of Z and a sequence I = (In)n=1 of intervals of increasing length contained in Z, let
  相似文献   

11.
12.
Let A be a d × d expansive matrix with ∣detA∣ = 2. This paper addresses Parseval frame wavelets (PFWs) in the setting of reducing subspaces of L2(Rd). We prove that all semi-orthogonal PFWs (semi-orthogonal MRA PFWs) are precisely the ones with their dimension functions being non-negative integer-valued (0 or 1). We also characterize all MRA PFWs. Some examples are provided.  相似文献   

13.
Let A be an n×n matrix with eigenvalues λ1,λ2,…,λn, and let m be an integer satisfying rank(A)?m?n. If A is real, the best possible lower bound for its spectral radius in terms of m, trA and trA2 is obtained. If A is any complex matrix, two lower bounds for are compared, and furthermore a new lower bound for the spectral radius is given only in terms of trA,trA2,‖A‖,‖AA-AA‖,n and m.  相似文献   

14.
In this paper we construct three infinite series and two extra triples (E8 and ) of complex matrices B, C, and A=B+C of special spectral types associated to Simpson's classification in Amer. Math. Soc. Proc. 1 (1992) 157 and Magyar et al. classification in Adv. Math. 141 (1999) 97. This enables us to construct Fuchsian systems of differential equations which generalize the hypergeometric equation of Gauss-Riemann. In a sense, they are the closest relatives of the famous equation, because their triples of spectral flags have finitely many orbits for the diagonal action of the general linear group in the space of solutions. In all the cases except for E8, we also explicitly construct scalar products such that A, B, and C are self-adjoint with respect to them. In the context of Fuchsian systems, these scalar products become monodromy invariant complex symmetric bilinear forms in the spaces of solutions.When the eigenvalues of A, B, and C are real, the matrices and the scalar products become real as well. We find inequalities on the eigenvalues of A, B, and C which make the scalar products positive-definite.As proved by Klyachko, spectra of three hermitian (or real symmetric) matrices B, C, and A=B+C form a polyhedral convex cone in the space of triple spectra. He also gave a recursive algorithm to generate inequalities describing the cone. The inequalities we obtain describe non-recursively some faces of the Klyachko cone.  相似文献   

15.
Let k, n, and r be positive integers with k < n and \({r \leq \lfloor \frac{n}{k} \rfloor}\). We determine the facets of the r-stable n, k-hypersimplex. As a result, it turns out that the r-stable n, k-hypersimplex has exactly 2n facets for every \({r < \lfloor \frac{n}{k} \rfloor}\). We then utilize the equations of the facets to study when the r-stable hypersimplex is Gorenstein. For every k > 0 we identify an infinite collection of Gorenstein r-stable hypersimplices, consequently expanding the collection of r-stable hypersimplices known to have unimodal Ehrhart \({\delta}\)-vectors.  相似文献   

16.
A full-rank under-determined linear system of equations Ax = b has in general infinitely many possible solutions. In recent years there is a growing interest in the sparsest solution of this equation—the one with the fewest non-zero entries, measured by ∥x0. Such solutions find applications in signal and image processing, where the topic is typically referred to as “sparse representation”. Considering the columns of A as atoms of a dictionary, it is assumed that a given signal b is a linear composition of few such atoms. Recent work established that if the desired solution x is sparse enough, uniqueness of such a result is guaranteed. Also, pursuit algorithms, approximation solvers for the above problem, are guaranteed to succeed in finding this solution.Armed with these recent results, the problem can be reversed, and formed as an implied matrix factorization problem: Given a set of vectors {bi}, known to emerge from such sparse constructions, Axi = bi, with sufficiently sparse representations xi, we seek the matrix A. In this paper we present both theoretical and algorithmic studies of this problem. We establish the uniqueness of the dictionary A, depending on the quantity and nature of the set {bi}, and the sparsity of {xi}. We also describe a recently developed algorithm, the K-SVD, that practically find the matrix A, in a manner similar to the K-Means algorithm. Finally, we demonstrate this algorithm on several stylized applications in image processing.  相似文献   

17.
We describe a connection between the combinatorics of generators for certain groups and the combinatorics of Helly's 1913 theorem on convex sets. We use this connection to prove fixed point theorems for actions of these groups on nonpositively curved metric spaces. These results are encoded in a property that we introduce called “property FAr”, which reduces to Serre's property FA when r=1. The method applies to S-arithmetic groups in higher Q-rank, to simplex reflection groups (including some nonarithmetic ones), and to higher rank Chevalley groups over polynomial and other rings (for example SLn(Z[x1,…,xd]), n>2).  相似文献   

18.
For the nonlinear wave equationu tt -Nu +G(t,u, u t ) = ? in Hilbert space, with associated homogeneous initial data, we show how ana priori bound of the form ∫ 0 T G(τ,u, u τ)∥2 ≤ κ ∫ 0 T ∥?(τ)∥2 leads to upper and lower bounds for ∥u∥ in terms of ∥?∥. An application to nonlinear elastodynamics is presented.  相似文献   

19.
Let N1 denote the class of generalized Nevanlinna functions with one negative square and let N1, 0 be the subclass of functions Q(z)∈N1 with the additional properties limy→∞ Q(iy)/y=0 and lim supy→∞ y |Im Q(iy)|<∞. These classes form an analytic framework for studying (generalized) rank one perturbations A(τ)=A+τ[·, ωω in a Pontryagin space setting. Many functions appearing in quantum mechanical models of point interactions either belong to the subclass N1, 0 or can be associated with the corresponding generalized Friedrichs extension. In this paper a spectral theoretical analysis of the perturbations A(τ) and the associated Friedrichs extension is carried out. Many results, such as the explicit characterizations for the critical eigenvalues of the perturbations A(τ), are based on a recent factorization result for generalized Nevanlinna functions.  相似文献   

20.
Let (X1,X2,…,Xn) and (Y1,Y2,…,Yn) be gamma random vectors with common shape parameter α(0<α?1) and scale parameters (λ1,λ2,…,λn), (μ1,μ2,…,μn), respectively. Let X()=(X(1),X(2),…,X(n)), Y()=(Y(1),Y(2),…,Y(n)) be the order statistics of (X1,X2,…,Xn) and (Y1,Y2,…,Yn). Then (λ1,λ2,…,λn) majorizes (μ1,μ2,…,μn) implies that X() is stochastically larger than Y(). However if the common shape parameter α>1, we can only compare the the first- and last-order statistics. Some earlier results on stochastically comparing proportional hazard functions are shown to be special cases of our results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号